Impact of nicotine-induced green tobacco sickness on DNA damage and the relation with symptoms and alterations of redox status in tobacco farmers.

Ecotoxicol Environ Saf

Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Posgraduate Program in Health and Human Development, La Salle University (UniLaSalle), Canoas, RS, Brazil. Electronic address:

Published: December 2020

During the harvest period, tobacco workers are exposed to nicotine and it is known that absorption of the alkaloid via the leaves causes green tobacco sickness (GST). We investigated if GST and its symptoms are associated with DNA damage and alterations of the redox status. DNA damage was measured in lymphocytes of tobacco workers and controls (n = 40/group) in single cell gel electrophoresis assays. Exposure to nicotine was determined by plasma cotinine measurements, alterations of the redox status by quantification of the total antioxidant capacity (TEAC) and of thiobarbituric acid reactive substances (TBARS). The symptoms of GTS included nausea, abdominal cramps, headache, vomiting and dizziness, and 50% of the workers had more than one symptom. Cotinine levels were enhanced in the workers (111 ng/mL); furthermore, the extent of DNA damage was ca. 3-fold higher than in the controls. This effect was more pronounced in participants with GST compared to healthy nicotine exposed workers and increased in individuals with specific symptoms (range 22-36%). TBARS levels did not differ between workers and unexposed controls, while TEAC values were even increased (by 14.3%). Contact with nicotine present in tobacco leaves causes GTS and leads to damage of the DNA; this effect is more pronounced in workers with GTS symptoms and is associated with alterations of the redox status. Damage of the genetic material which was found in the workers may lead to adverse long-term effects that are caused by genomic instability such as cancer and accelerated ageing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111397DOI Listing

Publication Analysis

Top Keywords

dna damage
16
alterations redox
16
redox status
16
green tobacco
8
tobacco sickness
8
workers
8
tobacco workers
8
symptoms associated
8
tobacco
6
damage
6

Similar Publications

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Infertility affects 10-15% of couples worldwide, with male factors accounting for half of cases. Environmental, behavioral, and genetic problems contribute to spermatogenic failure in 30% of idiopathic male infertility cases. Other factors, such as oxidative stress (OS), cause impaired spermatogenesis, abnormal sperm morphology, and reduced motility, eventually triggering male infertility.

View Article and Find Full Text PDF

Purpose: More active high-dose chemotherapy (HDC) regimens are needed for autologous stem-cell transplantation (ASCT) for refractory lymphomas. Seeking HDC enhancement with a poly(ADP-ribose) polymerase (PARP) inhibitor, we observed marked synergy between olaparib and vorinostat/gemcitabine/busulfan/melphalan (GemBuMel) against lymphoma cell lines, mediated by inhibition of DNA damage repair. Our preclinical work led us to clinically study olaparib/vorinostat/GemBuMel with ASCT.

View Article and Find Full Text PDF

Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20.

Mol Cell Biol

January 2025

Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA.

Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased.

View Article and Find Full Text PDF

Discovery of WDR5-MLL1 and HDAC Dual-Target Inhibitors for the Treatment of Acute Myeloid Leukemia.

J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!