Zinc (Zn) and its alloys are receiving great attention as promising biodegradable materials due to their suitable corrosion resistance, good biocompatibility, and highly desirable biofunctionality. Nevertheless, the low mechanical strength of pure Zn impedes its practical clinical application and there have been calls for further research into the Zn alloys and thermomechanical processes to enhance their mechanical properties and biocompatibility. Here, we report on the alloying efficacy of rare earth elements (REEs) including erbium (Er), dysprosium (Dy), and holmium (Ho) on the microstructure, mechanical properties, corrosion and wear behavior, and in vitro biological properties of Zn-1Mg-0.1RE alloys. Microstructural characterization revealed that the addition of 0.1 wt.% REEs had a significant refining effect on the grain size of the α-Zn matrix and the second phases of the alloys. Alloying of the REEs and hot-rolling effectively improved the mechanical properties due to both precipitation strengthening of the second phases of ErZn, DyZn, and HoZn and grain-refinement strengthening. The highest ultimate tensile strength of 259.4 MPa and yield strength of 234.8 MPa with elongation of 16.8% were achieved in the hot-rolled Zn-1Mg-0.1Ho. Alloying of REEs also improved the wear and corrosion resistance, and slowed down the degradation rate in Hanks' solution. Zn-1Mg-0.1Er showed the highest cytocompatibility of MC3T3-E1 cells cultured directly on the alloy surface and of MG-63 cells cultured in the alloy extract. Zn-1Mg-0.1Dy showed the best anticoagulant property among all the alloys. Overall, these Zn-1Mg-0.1RE (Er, Dy, and Ho) alloys can be considered promising biodegradable metallic materials for orthopedic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.09.036DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
promising biodegradable
8
corrosion resistance
8
zn-1mg-01re alloys
8
second phases
8
alloying rees
8
cells cultured
8
alloys
7
development biodegradable
4
biodegradable zn-1mg-01re
4

Similar Publications

Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants' challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!