A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative damage mechanism in Saccharomyces cerevisiae cells exposed to tetrachlorobisphenol A. | LitMetric

Oxidative damage mechanism in Saccharomyces cerevisiae cells exposed to tetrachlorobisphenol A.

Environ Toxicol Pharmacol

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China. Electronic address:

Published: November 2020

Tetrachlorobisphenol A (TCBPA) can promote intracellular reactive oxygen species (ROS) accumulation. However, limited attention has been given to mechanisms underlying TCBPA exposure-associated ROS accumulation. Here, such mechanisms were explored in the simple eukaryotic model organism Saccharomyces cerevisiae exposed to multiple concentrations of TCBPA. Addition of diphenyleneiodonium, a specific inhibitor of NADPH oxidase, blocked TCBPA treatment-associated intracellular ROS accumulation. NADPH oxidase can be activated by calcineurin, mitogen-activated protein kinase (MAPK), and tyrosine kinase. Therefore, corresponding specific inhibition respectively on these three kinases was performed and results suggested that the Ca signaling pathway, MAPK pathway, and tyrosine kinase pathway all contributed to the TCBPA exposure-associated intracellular ROS accumulation. In addition, TCBPA exposure-associated up-regulation of genes involved in ROS production and down-regulation of catalase promoted ROS accumulation in S. cerevisiae. To sum up, our current results provide insights into the understanding of TCBPA exposure-associated ROS accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2020.103507DOI Listing

Publication Analysis

Top Keywords

ros accumulation
24
tcbpa exposure-associated
16
saccharomyces cerevisiae
8
exposure-associated ros
8
nadph oxidase
8
intracellular ros
8
tyrosine kinase
8
tcbpa
7
ros
7
accumulation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!