The histone variant H3.3 regulates the transcription of the hepatitis B virus.

Ann Hepatol

Fundación Ciencia & Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Universidad San Sebastián, Santiago, 7510157, Chile. Electronic address:

Published: November 2021

Introduction And Objectives: About 250 million people around the world are chronically infected with the hepatitis B virus (HBV). Those people are at risk of developing hepatocellular carcinoma. The HBV genome is organized as a minichromosome in the infected hepatocyte and is associated with histones and non-histone proteins. In recent years, many groups have investigated the transcriptional regulation of HBV mediated by post-translational modifications on the histones associated with the covalently closed circular DNA (cccDNA). Our aim is to investigate the role of the histone variant H3.3.

Materials And Methods: An in vitro HBV replication model system based on the transfection of linear HBV genome monomeric molecules was used. We then either ectopically expressed or reduced the levels of H3.3, and of its histone chaperone HIRA. Viral intermediates were quantified and the level of H3K4me3 using Chromatin immunoprecipitation (ChIP) assay was measured.

Results: Histone variant H3.3 ectopically expressed in cells assembles into the viral cccDNA, correlating with increasing levels of the active histone mark H3K4me3 and HBV transcription. The opposite results were found upon diminishing H3.3 levels. Furthermore, the assembly of H3.3 into the cccDNA is dependent on the histone chaperone HIRA. Diminishing HIRA levels causes a reduction in the HBV intermediates.

Conclusions: Histone variant H3.3 positively regulates HBV transcription. Importantly, the characterization of the viral chromatin dynamics might allow the discovery of new therapeutic targets to develop drugs for the treatment of chronically-infected HBV patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aohep.2020.09.005DOI Listing

Publication Analysis

Top Keywords

histone variant
16
variant h33
12
hbv
9
hepatitis virus
8
hbv genome
8
ectopically expressed
8
histone chaperone
8
chaperone hira
8
hbv transcription
8
histone
7

Similar Publications

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

Unlabelled: The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.

View Article and Find Full Text PDF

Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML.

Sci Rep

January 2025

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!