Nr2e3 functional domain ablation by CRISPR-Cas9D10A identifies a new isoform and generates retinitis pigmentosa and enhanced S-cone syndrome models.

Neurobiol Dis

Departament of Genetics, Microbiology and Statistics, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain; CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain. Electronic address:

Published: December 2020

Mutations in NR2E3 cause retinitis pigmentosa (RP) and enhanced S-cone syndrome (ESCS) in humans. This gene produces a large isoform encoded in 8 exons and a previously unreported shorter isoform of 7 exons, whose function is unknown. We generated two mouse models by targeting exon 8 of Nr2e3 using CRISPR/Cas9-D10A nickase. Allele Δ27 is an in-frame deletion of 27 bp that ablates the dimerization domain H10, whereas allele ΔE8 (full deletion of exon 8) produces only the short isoform, which lacks the C-terminal part of the ligand binding domain (LBD) that encodes both H10 and the AF2 domain involved in the Nr2e3 repressor activity. The Δ27 mutant shows developmental alterations and a non-progressive electrophysiological dysfunction that resembles the ESCS phenotype. The ΔE8 mutant exhibits progressive retinal degeneration, as occurs in human RP patients. Our mutants suggest a role for Nr2e3 as a cone-patterning regulator and provide valuable models for studying mechanisms of NR2E3-associated retinal dystrophies and evaluating potential therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2020.105122DOI Listing

Publication Analysis

Top Keywords

retinitis pigmentosa
8
pigmentosa enhanced
8
enhanced s-cone
8
s-cone syndrome
8
nr2e3
5
nr2e3 functional
4
domain
4
functional domain
4
domain ablation
4
ablation crispr-cas9d10a
4

Similar Publications

Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.

Inherited retinal disorders (IRDs) represent a group of challenging genetic conditions that often lead to severe visual impairment or blindness. The complexity of these disorders, arising from their diverse genetic causes and the unique structural and functional aspects of retinal cells, has made developing effective treatments particularly challenging. Recent advancements in gene therapy, especially non-viral nucleic acid delivery systems like liposomes, solid lipid nanoparticles, dendrimers, and polymersomes, offer promising solutions.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases characterized by the progressive loss of photoreceptor function, visual impairment, and, ultimately, blindness. While gene therapy has emerged as a promising therapy, it is currently available only for the RPE65 gene mutation, leaving many patients without targeted genetic treatments. Non-surgical interventions may help in managing the progression of RP and improving patients' quality of life.

View Article and Find Full Text PDF

Background/objectives: The interphotoreceptor matrix proteoglycans 1 and 2 (IMPG1 and IMPG2) are two interdependent proteoglycans of the interphotoreceptor matrix (IPM). Mutations in IMPG1 or IMPG2 are linked to retinal diseases such as retinitis pigmentosa (RP) and vitelliform macular dystrophy (VMD), yet the specific mutations responsible for each condition remain undefined. This study identifies mutations in IMPG1 and IMPG2 linked to either RP or VMD.

View Article and Find Full Text PDF

Genotype-phenotype correlations for 17 Chinese families with inherited retinal dystrophies due to homozygous variants.

Sci Rep

January 2025

Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, 936 Huanghe East Road, Jinfeng District, Yinchuan, 750004, China.

In this study, patients with inherited retinal dystrophies (IRDs) who visited Ningxia Eye Hospital from January 2015 to September 2023 were analyzed. Through Whole Exome Sequencing (WES) and Sanger verification, 17 probands carrying homozygous variants were detected. The association between the genotype and clinical phenotype of patients with homozygous variants was analyzed.

View Article and Find Full Text PDF

Syndromic Retinitis Pigmentosa: A Narrative Review.

Vision (Basel)

January 2025

Sztárai Institute, University of Tokaj, 3950 Sárospatak, Hungary.

Retinitis pigmentosa (RP) encompasses inherited retinal dystrophies, appearing either as an isolated eye condition or as part of a broader systemic syndrome, known as syndromic RP. In these cases, RP includes systemic symptoms impacting other organs, complicating diagnosis and management. This review highlights key systemic syndromes linked with RP, such as Usher, Bardet-Biedl, and Alström syndromes, focusing on genetic mutations, inheritance, and clinical symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!