Biomedical nanoparticle design: What we can learn from viruses.

J Control Release

Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany. Electronic address:

Published: January 2021

Viruses are nanomaterials with a number of properties that surpass those of many synthetic nanoparticles (NPs) for biomedical applications. They possess a rigorously ordered structure, come in a variety of shapes, and present unique surface elements, such as spikes. These attributes facilitate propitious biodistribution, the crossing of complex biological barriers and a minutely coordinated interaction with cells. Due to the orchestrated sequence of interactions of their stringently arranged particle corona with cellular surface receptors they effectively identify and infect their host cells with utmost specificity, while evading the immune system at the same time. Furthermore, their efficacy is enhanced by their response to stimuli and the ability to spread from cell to cell. Over the years, great efforts have been made to mimic distinct viral traits to improve biomedical nanomaterial performance. However, a closer look at the literature reveals that no comprehensive evaluation of the benefit of virus-mimetic material design on the targeting efficiency of nanomaterials exists. In this review we, therefore, elucidate the impact that viral properties had on fundamental advances in outfitting nanomaterials with the ability to interact specifically with their target cells. We give a comprehensive overview of the diverse design strategies and identify critical steps on the way to reducing them to practice. More so, we discuss the advantages and future perspectives of a virus-mimetic nanomaterial design and try to elucidate if viral mimicry holds the key for better NP targeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525328PMC
http://dx.doi.org/10.1016/j.jconrel.2020.09.045DOI Listing

Publication Analysis

Top Keywords

biomedical nanoparticle
4
design
4
nanoparticle design
4
design learn
4
learn viruses
4
viruses viruses
4
viruses nanomaterials
4
nanomaterials number
4
number properties
4
properties surpass
4

Similar Publications

Regulation of Bone Remodeling by Metal-Phenolic Networks for the Treatment of Systemic Osteoporosis.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Osteoporosis is a systemic metabolic disease that impairs bone remodeling by favoring osteoclastic resorption over osteoblastic formation. Nanotechnology-based therapeutic strategies focus on the delivery of drug molecules to either decrease bone resorption or increase bone formation rather than regulating the entire bone remodeling process, and osteoporosis interventions suffer from this limitation. Here, we present a multifunctional nanoparticle based on metal-phenolic networks (MPNs) for the treatment of systemic osteoporosis by regulating both osteoclasts and osteoblasts.

View Article and Find Full Text PDF

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Plant-derived exosome-like nanoparticles in tissue repair and regeneration.

J Mater Chem B

January 2025

College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.

This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties.

View Article and Find Full Text PDF

Benzenedialdehyde-crosslinked gelatin nanoparticles for Pickering emulsion stabilization.

Curr Res Food Sci

December 2024

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.

View Article and Find Full Text PDF

Macrophage-based pathogenesis and theranostics of vulnerable plaques.

Theranostics

January 2025

Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.

Vulnerable plaques, which are high-risk features of atherosclerosis, constitute critical elements in the disease's progression due to their formation and rupture. Macrophages and macrophage-derived foam cells are pivotal in inducing vulnerability within atherosclerotic plaques. Thus, understanding macrophage contributions to vulnerable plaques is essential for advancing the comprehension of atherosclerosis and devising novel therapeutic and diagnostic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!