Mechanistic concepts of iron-sulfur protein biogenesis in Biology.

Biochim Biophys Acta Mol Cell Res

Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany. Electronic address:

Published: January 2021

Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2020.118863DOI Listing

Publication Analysis

Top Keywords

protein biogenesis
12
fe/s proteins
12
mechanistic concepts
8
fe/s protein
8
biogenesis systems
8
fe/s
7
protein
5
biogenesis
5
concepts iron-sulfur
4
iron-sulfur protein
4

Similar Publications

Legumes are an interesting matrix for food production. The aim of this study was to develop functional plant-based snacks using fermented red bean (RBB) seeds enriched with the following additives: marjoram-RBM (2%); carrot-RBC (30%); and red beetroot-RBRB (15%). In the process of constructing the snacks, the focus was on the maximum use of the raw material, including aquafaba, to improve nutritional properties, sensory acceptability, and biological activity.

View Article and Find Full Text PDF

Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy.

View Article and Find Full Text PDF

Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies.

Int J Mol Sci

December 2024

Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.

Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Effective Targeting of Glutamine Synthetase with Amino Acid Analogs as a Novel Therapeutic Approach in Breast Cancer.

Int J Mol Sci

December 2024

Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.

Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!