Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons.

Prog Neuropsychopharmacol Biol Psychiatry

Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology Research Group, Psychobiology Area, Department of Psychology, University of Cadiz, Cádiz, Spain. Electronic address:

Published: March 2021

The noradrenergic locus coeruleus nucleus is an important station in both the ascending and descending pain regulatory pathways. These neurons discharge in tonic and phasic modes in response to sensory stimuli. However, few studies have set out to characterize the electrophysiological response of the locus coeruleus to noxious stimuli in conditions of neuropathic pain. Thus, the effects of mechanical nociceptive stimulation of the sciatic nerve area on spontaneous (tonic) and sensory-evoked (phasic) locus coeruleus discharge were studied by extracellular recording in anesthetized rats seven, fourteen and twenty-eight days after chronic constriction injury. Minor significant electrophysiological changes were found seven and fourteen days after nerve injury. However, alterations to the spontaneous activity in both the ipsilateral and contralateral locus coeruleus were found twenty-eight days after nerve constriction, as witnessed by an increase of burst firing incidence and irregular firing patterns. Furthermore, noxious-evoked responses were exacerbated in the contralateral and ipsilateral nucleus at twenty-eight days after injury, as were the responses evoked when stimulating the uninjured paw. In addition, mechanical stimulation of the hindpaw produced a significant sensitization of neuronal tonic activity after 28 days of neuropathy. In summary, long-term nerve injury led to higher spontaneous activity and exacerbated noxious-evoked responses in the locus coeruleus to stimulation of nerve-injured and even uninjured hindpaws, coinciding temporally with the development of depressive and anxiogenic-like behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2020.110121DOI Listing

Publication Analysis

Top Keywords

locus coeruleus
24
twenty-eight days
12
neuropathic pain
8
days nerve
8
nerve injury
8
spontaneous activity
8
noxious-evoked responses
8
locus
6
coeruleus
6
pain increases
4

Similar Publications

Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.

View Article and Find Full Text PDF

Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling.

Cogn Neurodyn

December 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi China.

The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory.

View Article and Find Full Text PDF

Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

Microorganisms

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.

View Article and Find Full Text PDF

The brainstem reticular formation pivots abnormal neural transmission in the course of Anorexia Nervosa.

J Neural Transm (Vienna)

January 2025

Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa, 56100, PI, Italy.

Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the potential effects of different doses of essential oil (Lavender EO) administered by inhalation on sleep latency and neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation (TSD).

Materials And Methods: Forty-eight male Sprague-Dawley rats were divided into five groups: Control, Alprazolam (ALP, 0.25 mg/kg given intraperitoneally), L1 (Lavender EO, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!