Acute respiratory distress syndrome (ARDS) is a rapidly progressive disease with unknown pathogenesis. Damage of pulmonary microvascular endothelial cells (PMVECs) caused by inflammatory storm caused by cytokines such as TNF-α is the potential pathogenesis of ARDS. In this study, we examined the role of ezrin and Rac1 in TNF-α-related pathways, which regulates the permeability of PMVECs. Primary rat pulmonary microvascular endothelial cells (RPMVECs) were isolated and cultured. RPMVECs were treated with rat TNF-α (0, 1, 10, 100 ng/ml), and the cell activity of each group was measured using a CCK8 kit. The integrity of endothelial barrier was measured by transendothelial resistance (TEER) and FITC-BSA flux across RPMVECs membranes. Pulldown assay and Western blot was used to detect the activity of RAS-associated C3 botulinum toxin substrate 1 (Rac1) and Ezrin phosphorylation. Short hairpin RNA (shRNA) targeting ezrin and Rac1 was utilized to evaluate the effect of RPMVECs permeability and related pathway. The effects of ezrin and Rac1 on cytoskeleton were confirmed by immunofluorescence. Our results revealed that active Rac1 was essential for protecting the RPMVEC barrier stimulated by TNF-α, while active ezrin could partially destroy the PMVEC barrier by reducing Rac1 activity and regulating the subcellular structure of the cytoskeleton. These findings may be used to create new therapeutic strategies for targeting Rac1 in the treatment of ARDS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525657 | PMC |
http://dx.doi.org/10.1016/j.mvr.2020.104093 | DOI Listing |
Heliyon
February 2024
Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Busiateen 15503, Muharraq, Bahrain.
Background: The relationship between diabetes mellitus (DM) and asthma is complex and can impact disease trajectories.
Aim: To explore the bidirectional influences between the two conditions on clinical outcomes and disease control.
Methods: We systematically reviewed the literature on the relationship between DM and asthma, focusing on their impacts, mechanisms, and therapeutic implications.
Burns Trauma
January 2025
Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China.
Background: Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined.
View Article and Find Full Text PDFSemin Liver Dis
January 2025
Hepatology, University of Pennsylvania, Philadelphia, United States.
Critically ill patients with cirrhosis and liver failure not uncommonly have hypotension due to multifactorial reasons, that include hyperdynamic state with increased cardiac index, low systemic vascular resistance due to portal hypertension, following the use of beta blocker or diuretic therapy, and severe sepsis. These changes are mediated by microvascular alterations in the liver, systemic inflammation, activation of renin angiotensin aldosterone system, and vasodilatation due to endothelial dysfunction. Hemodynamic assessment includes measuring inferior vena cava indices, cardiac output and systemic vascular resistance using point-of-care ultrasound (POCUS), in addition to arterial waveform analysis, or pulmonary artery pressures, and lactate clearance to guide fluid resuscitation.
View Article and Find Full Text PDFBMJ Open
December 2024
British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!