New energetic polymers were synthesized from monomers containing a trans-2-tetrazene unit. In contrast to traditional binders, such as inert hydroxytelechelic polybutadiene or glycidyl azide polymers-in which the energetic features are on the side chains-the energetic groups in the polytetrazenes are incorporated directly in the polymer backbone. Thermal analyses demonstrated that decomposition occurs at approximately 130 °C, regardless of the polymer structure. Glass-transition temperatures ranged from -34.2 to 0.2 °C and could be lowered further (to -61 °C) with the help of a new diazidotetrazene energetic plasticizer. Interestingly, hexafluoroisopropanol (HFIP) enabled complete, room-temperature depolymerization within 1 week. This depolymerization should enable the recycling of unused pyrotechnic compositions based on these new binders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202008562 | DOI Listing |
J Comput Chem
January 2025
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, India.
We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.
View Article and Find Full Text PDFTalanta
December 2024
Department of Pathology, College of Medicine, King Khalid University, Asir, 61421, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Mansoura University, Egypt. Electronic address:
Complexing medications with cyclodextrins can enhance their solubility and stability. In this study, we investigated the host-guest complexation between Tetrahydrocurcumin (THC) and Hydroxypropyl-β-Cyclodextrin (HP-β-CD) using density functional theory (DFT) at the B3LYP-D3/TPZ level of theory in two possible orientations. To determine the reactive sites in both complexes for electrophilic and nucleophilic attacks, we calculated and interpreted the binding energy, HOMO and LUMO orbitals, global chemical reactivity descriptors, natural bond orbital (NBO) analysis, and Fukui indices.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
The assessment of electronic structure descriptions utilized in the simulation of the ultrafast excited-state dynamics of Fe(II) complexes is presented. Herein, we evaluate the performance of the RPBE, OPBE, BLYP, B3LYP, B3LYP*, PBE0, TPSSh, CAM-B3LYP, and LC-BLYP (time-dependent) density functional theory (DFT/TD-DFT) methods in full-dimensional trajectory surface hopping (TSH) simulations carried out on linear vibronic coupling (LVC) potentials. We exploit the existence of time-resolved X-ray emission spectroscopy (XES) data for the [Fe(bmip)] and [Fe(terpy)] prototypes for dynamics between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states, which serve as a reference to benchmark the calculations (bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, terpy = 2,2':6',2″-terpyridine).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!