Purpose: Literature on clinical note mining has highlighted the superiority of machine learning (ML) over hand-crafted rules. Nevertheless, most studies assume the availability of large training sets, which is rarely the case. For this reason, in the clinical setting, rules are still common. We suggest 2 methods to leverage the knowledge encoded in pre-existing rules to inform ML decisions and obtain high performance, even with scarce annotations.
Methods: We collected 501 prostate pathology reports from 6 American hospitals. Reports were split into 2,711 core segments, annotated with 20 attributes describing the histology, grade, extension, and location of tumors. The data set was split by institutions to generate a cross-institutional evaluation setting. We assessed 4 systems, namely a rule-based approach, an ML model, and 2 hybrid systems integrating the previous methods: a Rule as Feature model and a Classifier Confidence model. Several ML algorithms were tested, including logistic regression (LR), support vector machine (SVM), and eXtreme gradient boosting (XGB).
Results: When training on data from a single institution, LR lags behind the rules by 3.5% (F1 score: 92.2% 95.7%). Hybrid models, instead, obtain competitive results, with Classifier Confidence outperforming the rules by +0.5% (96.2%). When a larger amount of data from multiple institutions is used, LR improves by +1.5% over the rules (97.2%), whereas hybrid systems obtain +2.2% for Rule as Feature (97.7%) and +2.6% for Classifier Confidence (98.3%). Replacing LR with SVM or XGB yielded similar performance gains.
Conclusion: We developed methods to use pre-existing handcrafted rules to inform ML algorithms. These hybrid systems obtain better performance than either rules or ML models alone, even when training data are limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/CCI.20.00028 | DOI Listing |
Langmuir
January 2025
School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
Ofloxacin, a commonly prescribed antibiotic, raises serious environmental concerns due to its persistence in aquatic systems. This study offers new insights into the environmental behavior of ofloxacin and its interactions with carbon-based adsorbents with the aim of enhancing our understanding of its removal mechanisms via adsorption processes. Using a comprehensive computational approach, we analyzed the speciation, pK values, and solubility of ofloxacin across various pH conditions, accounting for all four microspecies, including the often-overlooked neutral form.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Beijing Computational Science Research Center, Beijing 100193, China.
In hybrid systems where nanowires are proximity-coupled with superconductors, the low-energy theory fails to determine the topological phase with Majorana fermion (MF) when the magnetic field or proximity coupling is much stronger. To overcome this limitation, we propose a holistic approach that defines MF by considering both the motion of electrons in the nanowire and the quasiparticle excitations in the superconductor. This approach transcends the constraints of low-energy theory and offers broad applicability.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA.
The spin-exotic hybrid meson π_{1}(1600) is predicted to have a large decay rate to the ωππ final state. Using 76.6 pb^{-1} of data collected with the GlueX detector, we measure the cross sections for the reactions γp→ωπ^{+}π^{-}p, γp→ωπ^{0}π^{0}p, and γp→ωπ^{-}π^{0}Δ^{++} in the range E_{γ}=8-10 GeV.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Indian Institute of Technology, Department of Physics, -Bombay, Powai, Mumbai 400076, India.
Exploring continuous time crystals (CTCs) within the symmetric subspace of spin systems has been a subject of intensive research in recent times. Thus far, the stability of the time-crystal phase outside the symmetric subspace in such spin systems has gone largely unexplored. Here, we investigate the effect of including the asymmetric subspaces on the dynamics of CTCs in a driven dissipative spin model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!