Insulin degludec is an ultra-long-acting insulin analogue that is increasingly being used in diabetes due to its favourable efficacy and safety profile. Thus, there is an increasing demand for a reliable and specific analytical method to quantify insulin degludec for research, pharmaceutical industry and clinical applications. We developed and validated an automated, high-throughput method for quantification of insulin degludec in human blood samples across the expected clinical range combining immunopurification with high-resolution mass spectrometry. Validation was performed according to the requirements of the US Food and Drug Administration. The method satisfyingly met the following parameters: lower limit of quantification (120 pM), linearity, accuracy (error < 5%), precision (CV < 7.7%), selectivity, carry-over, recovery (89.7-97.2%), stability and performance in the presence of other insulin analogues. The method was successfully applied to clinical samples of patients treated with insulin degludec showing a good correlation with the administered dose (r = 0.78). High usability of the method is supported by the small specimen volume, automated sample processing and short analysis time. In conclusion, this reliable, easy-to-use and specific mass spectrometric insulin degludec assay offers great promise to address the current unmet need for standardized insulin analytics in academic and industrial research. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680744 | PMC |
http://dx.doi.org/10.1007/s00216-020-02971-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!