Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To evaluate the additional prognostic value of multiparametric MR-based radiomics in patients with glioblastoma when combined with conventional clinical and genetic prognostic factors.
Methods: In this single-center study, patients diagnosed with glioblastoma between October 2007 and December 2019 were retrospectively screened and grouped into training and test sets with a 7:3 distribution. Segmentations of glioblastoma using multiparametric MRI were performed automatically via a convolutional-neural network. Prognostic factors in the clinical model included age, sex, type of surgery/post-operative treatment, and tumor location; those in the genetic model included statuses of isocitrate dehydrogenase-1 mutation and O-6-methylguanine-DNA-methyltransferase promoter methylation. Univariate and multivariate Cox proportional hazards analyses were performed for overall survival (OS) and progression-free survival (PFS). Integrated time-dependent area under the curve (iAUC) for survival was calculated and compared between prognostic models via the bootstrapping method (performances were validated with prediction error curves).
Results: Overall, 120 patients were included (training set, 85; test set, 35). The mean OS and PFS were 25.5 and 18.6 months, respectively. The prognostic performances of multivariate models improved when radiomics was added to the clinical model (iAUC: OS, 0.62 to 0.73; PFS, 0.58 to 0.66), genetic model (iAUC: OS, 0.59 to 0.67; PFS, 0.59 to 0.65), and combined model (iAUC: OS, 0.65 to 0.73; PFS, 0.62 to 0.67). In the test set, the combined model (clinical, genetic, and radiomics) demonstrated robust validation for risk prediction of OS and PFS.
Conclusions: Radiomics increased the prognostic value when combined with conventional clinical and genetic prognostic models for OS and PFS in glioblastoma patients.
Key Points: • CNN-based automatic segmentation of glioblastoma on multiparametric MRI was useful in extracting radiomic features. • Patients with glioblastoma with high-risk radiomics scores had poor overall survival (hazards ratio 8.33, p < 0.001) and progression-free survival (hazards ratio 3.76, p < 0.001). • MR-based radiomics improved the survival prediction when combined with clinical and genetic factors (overall and progression-free survival iAUC from 0.65 to 0.73 and 0.62 to 0.67, respectively; both p < 0.001).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-020-07335-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!