PKC and PKA phosphorylation inhibit TREK-1 channels downstream of G protein-coupled receptor activation in vitro. However, the role of phosphorylation of TREK-1 in neuropathic pain is unknown. The purpose of this study was to investigate whether altered TREK-1 channel function by PKA and PKC modulators contributes to antiallodynia in neuropathic rats. Furthermore, we investigated if the in vitro described sites for PKC and PKA phosphorylation (S300 and S333, respectively) participate in the modulation of TREK-1 in naïve and neuropathic rats. L5/L6 spinal nerve ligation (SNL) induced tactile allodynia. Intrathecal injection of BL-1249 (TREK-1 activator) reversed nerve injury-induced tactile allodynia, whereas spadin (TREK-1 blocker) produced tactile allodynia in naïve rats and reversed the antiallodynic effect induced by BL-1249 in neuropathic rats. Intrathecal administration of rottlerin or Rp-cAMPs (PKC and PKA inhibitors, respectively) enhanced the antiallodynia observed with BL-1249 in neuropathic rats. In contrast, pretreatment with PdBu or forskolin (PKC and PKA activators, respectively) reduced the BL-1249-induced antiallodynia. Intrathecal injection of two high-activity TREK-1 recombinant channels, using a in vivo transfection method with lipofectamine, with mutations at PKC/PKA phosphosites (S300A and S333A) reversed tactile allodynia in neuropathic rats, with no effect in naïve rats. In contrast, transfection of two low-activity TREK-1 recombinant channels with phosphomimetic mutations at those sites (S300D and S333D) produced tactile allodynia in naïve rats and interfered with antiallodynic effects of rottlerin/BL-1249 or Rp-cAMPs/BL-1249. Data suggest that TREK-1 channel activity can be dynamically tuned in vivo by PKC/PKA to provoke allodynia and modulate its antiallodynic role in neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.15204 | DOI Listing |
Mol Med
January 2025
Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.
Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
China Medical University, Shenyang, China.
Cisplatin chemotherapy has been used as the main treatment for different types of cancer. However, cisplatin chemotherapy-induced peripheral neuropathic pain (CIPNP) seriously affects the treatment process and quality of life of patients. In addition, it impacts the underlying mechanism and prevention and treatment strategies, indicating that drug selection and efficacy evaluation need to be further investigated.
View Article and Find Full Text PDFBr J Anaesth
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Faculty of Medicine, Department of Physiology, Istanbul Demiroglu Bilim University, Istanbul, Turkey.
Background: Diabetic neuropathy (DN) is a heterogeneous condition characterized by complex pathophysiological changes affecting both autonomic and somatic components of the nervous system. Inflammation and oxidative stress are recognized contributors to the pathogenesis of DN. This study aims to evaluate the therapeutic potential of dichloroacetic acid (DCA) in alleviating DN symptoms, focusing on its anti-inflammatory and antioxidant properties.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Center for Medical Sciences, International University of Health and Welfare, 324-8501, Otawara, Tochigi, Japan; Bio-Laboratory, Foundation for Advancement of International Science, 305-0821, Tsukuba, Ibaraki, Japan. Electronic address:
Previously, we found that serotonin (5-HT) release in the central nucleus of the amygdala (CeA) of anesthetized rats decreases in response to innocuous stroking of the skin, irrespective of stimulus laterality, but increases in response to noxious pinching applied to a hindlimb contralateral to the 5-HT measurement site. The aim of the present study was to determine whether intra-CeA 5-HT release responses to cutaneous stimulation were altered in an animal model of neuropathic pain induced by ligation of the left L5 spinal nerve. In anesthetized neuropathic pain model rats, stroking of the left hindlimb increased 5-HT release in the CeA, whereas stroking of the right hindlimb decreased it.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!