The contamination of soils and water with copper (Cu) can compromise the crops production and quality. Fungicides containing Cu are widely and intensively used in viticulture contributing to environmental contamination and genotoxicity in Vitis vinifera L. Despite the difficulty in reproducing field conditions in the laboratory, hydroponic solutions enriched with Cu (1, 10, 25 and 50 μM) were used in forced V. vinifera cuttings to evaluate the DNA damage in leaves of four wine-producing varieties ('Tinta Barroca', 'Tinto Cão', 'Malvasia Fina' and 'Viosinho'). Alkaline comet assay followed by fluorescence in situ hybridisation (Comet-FISH) was performed with the 45S ribosomal DNA (rDNA) and telomeric [(TTTAGGG)] sequences as probes. This study aimed to evaluate the tolerance of the four varieties to different concentrations of Cu and to determine which genomic regions were more prone to DNA damage. The comet assay revealed comets of categories 0 to 4 in all varieties. The DNA damage increased significantly (p < 0.001) with the Cu concentration. 'Tinto Cão' appeared to be the most sensitive variety because it had the highest DNA damage increase in 50 μM Cu relative to the control. Comet-FISH was only performed on slides of the control and 50 μM Cu treatments. Comets of all varieties treated with 50 μM Cu showed rDNA hybridisation on the head, 'halo' and tail (category III), and their frequency was significantly higher than that of control. The frequency of category III comets hybridised with the telomeric probe was only significantly different from the control in 'Malvasia Fina' and 'Tinta Barroca'. Comet-FISH revealed partial damage on rDNA and telomeric DNA in response to Cu but also in control, confirming the high sensitivity of these genomic regions to DNA fragmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10995-7DOI Listing

Publication Analysis

Top Keywords

dna damage
20
dna
8
vitis vinifera
8
'tinta barroca'
8
'tinto cão'
8
'malvasia fina'
8
comet assay
8
comet-fish performed
8
rdna telomeric
8
genomic regions
8

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.

Medicine (Baltimore)

January 2025

Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.

View Article and Find Full Text PDF

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!