Molecular basis of reproductive senescence: insights from model organisms.

J Assist Reprod Genet

Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.

Published: January 2021

Purpose: Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance.

Methods: Deciphering the underlying processes that drive reproductive decline is particularly challenging in women in whom a discrete oocyte pool is established during embryogenesis and may remain dormant for tens of years. Instead, our understanding of the processes that drive reproductive senescence has emerged from studies in model organisms, both vertebrate and invertebrate, that are the focus of this literature review.

Conclusions: Studies of reproductive aging in model organisms not only have revealed the detrimental cellular changes that occur with age but also are helping identify major regulator proteins controlling them. Here, we discuss what we have learned from model organisms with respect to the molecular mechanisms that maintain both genome integrity and oocyte quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822982PMC
http://dx.doi.org/10.1007/s10815-020-01959-4DOI Listing

Publication Analysis

Top Keywords

model organisms
16
reproductive decline
12
reproductive senescence
8
parental age
8
processes drive
8
drive reproductive
8
reproductive
6
molecular basis
4
basis reproductive
4
senescence insights
4

Similar Publications

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, , as a small animal model that complements the mouse and monkey models.

View Article and Find Full Text PDF

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.

View Article and Find Full Text PDF

Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.

View Article and Find Full Text PDF

The Role of Pharmacometrics in Advancing the Therapies for Autoimmune Diseases.

Pharmaceutics

December 2024

Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.

Autoimmune diseases (AIDs) are a group of disorders in which the immune system attacks the body's own tissues, leading to chronic inflammation and organ damage. These diseases are difficult to treat due to variability in drug PK among individuals, patient responses to treatment, and the side effects of long-term immunosuppressive therapies. In recent years, pharmacometrics has emerged as a critical tool in drug discovery and development (DDD) and precision medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!