Brain tissues that are severely damaged by traumatic brain injury (TBI) is hardly regenerated, which leads to a cavity or a repair with glial scarring. Stem-cell therapy is one viable option to treat TBI-caused brain tissue damage, whose use is, whereas, limited by the low survival rate and differentiation efficiency of stem cells. To approach this problem, we developed an injectable hydrogel using imidazole groups-modified gelatin methacrylate (GelMA-imid). In addition, polydopamine (PDA) nanoparticles were used as carrier for stromal-cell derived factor-1 (SDF-1α). GelMA-imid hydrogel loaded with PDA@SDF-1α nanoparticles and human amniotic mesenchymal stromal cells (hAMSCs) were injected into the damaged area in an cryogenic injury model in rats. The hydrogel had low module and its average pore size was 204.61 ± 41.41 nm, which were suitable for the migration, proliferation and differentiation of stem cells. cell scratch and differentiation assays showed that the imidazole groups and SDF-1α could promote the migration of hAMSCs to injury site and their differentiation into nerve cells. The highest amount of nissl body was detected in the group of GelMA-imid/SDF-1α/hAMSCs hydrogel in the model. Additionally, histological analysis showed that GelMA-imid/SDF-1α/hAMSCs hydrogel could facilitate the regeneration of regenerate endogenous nerve cells. In summary, the GelMA-imid/SDF-1α/hAMSCs hydrogel promoted homing and differentiation of hAMSCs into nerve cells, and showed great application potential for the physiological recovery of TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508914PMC
http://dx.doi.org/10.1016/j.bioactmat.2020.08.026DOI Listing

Publication Analysis

Top Keywords

nerve cells
12
gelma-imid/sdf-1α/hamscs hydrogel
12
hydrogel loaded
8
sdf-1α promote
8
brain injury
8
stem cells
8
hydrogel
7
differentiation
6
cells
6
neuro-regenerative imidazole-functionalized
4

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!