Dynamic hydrogels have been prepared by cross-linking of -carboxymethyl chitosan (-CMCS) with reversibly connected imino-PEGylated dynamers. The double imine chitosan/dynamer and dynamer bonds and were used to provide tighter structures and adaptive drug release behaviors of the hydrogels. The structural and physical properties of the resulted hydrogels were examined, showing good thermal stability and higher swelling behaviors (up to 3,000%). When hydrogels with various composition ratios were further applied for delivery of anti-cancer drug fluorouracil (5-FU), high drug encapsulation rates were recorded, up to 97%. The release profile of 5-FU showed fast rate at the beginning, followed by slow increase to the maximum amount within 12 h, demonstrating potential as drug carriers for efficient drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479202 | PMC |
http://dx.doi.org/10.3389/fchem.2020.00739 | DOI Listing |
Biomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
January 2025
Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California, USA.
Protein therapeutics have emerged as an exceedingly promising treatment modality in recent times but are predominantly given as intravenous administration. Transitioning to subcutaneous (SC) administration of these therapies could significantly enhance patient convenience by enabling at-home administration, thereby potentially reducing the overall cost of treatment. Approaches that enable sustained delivery of subcutaneously administered biologics offer further advantages in terms of less frequent dosing and better patient compliance.
View Article and Find Full Text PDFSci Adv
January 2025
School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.
Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.
Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.
View Article and Find Full Text PDFGels
January 2025
AIT-Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria.
This review summarizes the fundamental concepts, recent advancements, and emerging trends in the field of stimuli-responsive hydrogels. While numerous reviews exist on this topic, the field continues to evolve dynamically, and certain research directions are often overlooked. To address this, we classify stimuli-responsive hydrogels based on their response mechanisms and provide an in-depth discussion of key properties and mechanisms, including swelling kinetics, mechanical properties, and biocompatibility/biodegradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!