The objective of this study was to compare the use of hydroxocobalamin (B12a) and a succinate prodrug to evaluate for improvement in mitochondrial function in an model of cyanide poisoning. Peripheral blood mononuclear cells (PBMC) and human aortic smooth muscle cells (HASMC) incubated with 50 mM of sodium cyanide (CN) for five minutes serving as the CN group compared to controls. We investigated the following: (1) Mitochondrial respiration; (2) Superoxide and mitochondrial membrane potential with microscopy; (3) Citrate synthase protein expression. All experiments were performed with a cell concentration of 2-3 × 10 cells/ml for both PBMC and HASMC. There were four conditions: (1) Control (no exposure); (2) Cyanide (exposure only); (3) B12a (cyanide exposure followed by B12a treatment); (4) NV118 (cyanide followed by NV118 treatment). In this study the key findings include: (1) Improvement in key mitochondrial respiratory states with the succinate prodrug (NV118) but not B12a; (2) Attenuation of superoxide production with treatment of NV118 but not with B12a treatment; (3) The changes in respiration were not secondary to increased mitochondrial content as measured by citrate synthase; (4) The use of easily accessible human blood cells showed similar mitochondrial response to both cyanide and treatment to HASMC. The use of a succinate prodrug to circumvent partial CIV inhibition by cyanide with clear reversal of cellular respiration and superoxide production that was not attributed to changes in mitochondrial content not seen by the use of B12a.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511654 | PMC |
http://dx.doi.org/10.1016/j.toxrep.2020.09.002 | DOI Listing |
Molecules
December 2024
Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wrocław, Poland.
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of vitamin D even during periods of sunlight deficiency. Acylglycerol and glycerophospholipid containing succinate-linked provitamin D at the -2 position of the glycerol backbone were synthesized from dihydroxyacetone (DHA) and -glycerophosphocholine (GPC), respectively. The three-step synthesis of 1,3-dipalmitoyl-2-(7-dehydrocholesterylsuccinoyl)glycerol involved the esterification of DHA with palmitic acid, reduction of the carbonyl group, and conjugation of the resulting 1,3-dipalmitoylglycerol with 7-dehydrocholesterol hemisuccinate (7-DHC HS).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
Introduction: Ulcerative colitis (UC) is a chronic intestinal disease characterized by spleen-lung qi deficiency and dampness-pathogenic obstruction. Although there are various treatment options available, patients frequently encounter significant drug-related side effects. Previous studies have shown the potential of A (CPA) in treating UC, but their limited bioavailability has restricted their clinical use.
View Article and Find Full Text PDFActa Biomater
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China. Electronic address:
Adv Healthc Mater
December 2024
Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
Int J Pharm
September 2024
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!