Bidirectional-nonlinear threshold switching behaviors and thermally robust stability of ZnTe selectors by nitrogen annealing.

Sci Rep

Novel Functional Materials and Device Laboratory, Research Institute of Natural Science, Department of Physics, Hanyang University, Seoul, 04763, Republic of Korea.

Published: October 2020

Three-dimensional stackable memory frames involving the integration of two-terminal scalable crossbar arrays are expected to meet the demand for high-density memory storage, fast switching speed, and ultra-low power operation. However, two-terminal crossbar arrays introduce an unintended sneak path, which inevitably requires bidirectional nonlinear selectors. In this study, the advanced threshold switching (TS) features of ZnTe chalcogenide material-based selectors provide bidirectional threshold switching behavior, nonlinearity of 10, switching speed of less than 100 ns, and switching endurance of more than 10. In addition, thermally robust ZnTe selectors (up to 400 ℃) can be obtained through the use of nitrogen-annealing treatment. This process can prevent possible phase separation phenomena observed in generic chalcogenide materials during thermal annealing which occurs even at a low temperature of 250 ℃. The possible characteristics of the electrically and thermally advanced TS nature are described by diverse structural and electrical analyses through the Poole-Frankel conduction model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529746PMC
http://dx.doi.org/10.1038/s41598-020-73407-3DOI Listing

Publication Analysis

Top Keywords

threshold switching
12
thermally robust
8
znte selectors
8
crossbar arrays
8
switching speed
8
switching
6
bidirectional-nonlinear threshold
4
switching behaviors
4
behaviors thermally
4
robust stability
4

Similar Publications

As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH).

View Article and Find Full Text PDF

A Carbon Nanotube Transistor Based on Buried-Gate Structure.

Materials (Basel)

January 2025

School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.

From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.

View Article and Find Full Text PDF

The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD.

View Article and Find Full Text PDF

CAPTRANE evaluated the efficacy and tolerability of high-concentration capsaicin patch (HCCP) vs. oral pregabalin for the treatment of postsurgical neuropathic pain (PSNP) following breast cancer surgery. The study was designed with the aim of demonstrating noninferiority of one HCCP against daily pregabalin.

View Article and Find Full Text PDF

we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!