Sea ice cover in the Arctic and Antarctic is an important indicator of changes in the climate, with important environmental, economic and security consequences. The complexity of the spatio-temporal dynamics of sea ice makes it difficult to assess the temporal nature of the changes-e.g. linear or exponential-and their precise geographical loci. In this study, Koopman Mode Decomposition (KMD) is applied to satellite data of sea ice concentration for the Northern and Southern hemispheres to gain insight into the temporal and spatial dynamics of the sea ice behavior and to predict future sea ice behavior. We observe spatial modes corresponding to the mean and annual variation of Arctic and Antarctic sea ice concentration and observe decreases in the mean sea ice concentration from early to later periods, as well as corresponding shifts in the locations that undergo significant annual variation in sea ice concentration. We discover exponentially decaying spatial modes in both hemispheres and discuss their precise spatial extent, and also perform predictions of future sea ice concentration. The Koopman operator-based, data-driven decomposition technique gives insight into spatial and temporal dynamics of sea ice concentration not apparent in traditional approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530978 | PMC |
http://dx.doi.org/10.1038/s41598-020-73211-z | DOI Listing |
Heliyon
December 2024
Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.
Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany.
For a given solar elevation, the levels of solar ultraviolet radiation at the Earth's surface are determined by the amounts of ozone, aerosols, and clouds, as well as by the reflectivity of the surface. Here, we study the evolution of these factors for three selected decades in the period 1950-2100 using results from simulations with Earth-System models (ESMs) participating in the 6 phase of the Coupled Model Intercomparison Project (CMIP6). The simulations for the future are based on three Shared Socioeconomic Pathways: SSP1-2.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geography, Centre for Northern Studies (CEN), & Takuvik International Research Laboratory, Université Laval, Québec, QC, Canada.
The Arctic is among the most rapidly warming regions on Earth, and climate change has triggered widespread alterations to its cryosphere and ecosystems. Among these, high Arctic lakes are highly sensitive to rising temperatures due to the influence of ice cover on multiple limnological processes. Here, we studied the sediments of three lakes on northern Ellesmere Island (82.
View Article and Find Full Text PDFNat Commun
January 2025
Irreversible Climate Change Research Center, Yonsei University, Seoul, Republic of Korea.
The recent sea ice changes in the Northern Hemisphere (NH), necessitate elucidating the sea ice variability over the past 2.6 million years (Ma), when the Earth's glacial cycles transitioned from ∼41 to ∼100 kyr periodicity, following the Mid-Pleistocene Transition (MPT) period (0.7-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!