Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency.

BMC Plant Biol

State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China.

Published: October 2020

Background: Agricultural yield is closely associated with nitrogen application. Thus, reducing the application of nitrogen without affecting agricultural production remains a challenging task. To understand the metabolic, physiological, and morphological response of wheat (Triticum aestivum) to nitrogen deficiency, it is crucial to identify the genes involved in the activated signaling pathways.

Results: We conducted a hydroponic experiment using a complete nutrient solution (N1) and a nutrient solution without nitrogen (N0). Wheat plants under nitrogen-deficient conditions (NDC) showed decreased crop height, leaf area, root volume, photosynthetic rate, crop weight, and increased root length, root surface area, root/shoot ratio. It indicates that nitrogen deficiency altered the phenotype of wheat plants. Furthermore, we performed a comprehensive analysis of the phenotype, transcriptome, GO pathways, and KEGG pathways of DEGs identified in wheat grown under NDC. It showed up-regulation of Exp (24), and Nrt (9) gene family members, which increased the nitrogen absorption and down-regulation of Pet (3), Psb (8), Nar (3), and Nir (1) gene family members hampered photosynthesis and nitrogen metabolism.

Conclusions: We identified 48 candidate genes that were involved in improved photosynthesis and nitrogen metabolism in wheat plants grown under NDC. These genes may serve as molecular markers for genetic breeding of crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528333PMC
http://dx.doi.org/10.1186/s12870-020-02662-3DOI Listing

Publication Analysis

Top Keywords

photosynthesis nitrogen
12
nitrogen deficiency
12
wheat plants
12
nitrogen
10
nitrogen metabolism
8
metabolism wheat
8
genes involved
8
nutrient solution
8
grown ndc
8
gene family
8

Similar Publications

Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon-nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest.

View Article and Find Full Text PDF

The development of efficient photocatalysts inspired by natural photosynthesis has drawn considerable interest for sustainable hydrogen (H) production. Among the various strategies for enhancing H evolution, constructing step-scheme (S-scheme) heterojunctions has attracted extensive interest, thanks to their limited charge recombination and enhanced charge transport in comparison to the traditional photocatalytic systems. Herein, we report the engineering of a novel S-scheme heterojunction by integrating ultrathin ZnInS (ZIS) nanosheets with MOF-derived N-doped NiO porous microrods (ZIS/N-NiO) toward superior photocatalytic behaviors.

View Article and Find Full Text PDF

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).

Plant Mol Biol

January 2025

Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.

Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.

View Article and Find Full Text PDF

Photorespiration, often considered as a wasteful process, is a key target for bioengineering to improve crop yields. Several photorespiratory bypasses have been designed to efficiently metabolize 2-phosphoglycolate and increase the CO2 concentration in chloroplasts, thereby reducing photorespiration. However, the suppression of primary nitrate assimilation remains an issue when photorespiration is inhibited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!