Thermal ion retarding potential analyzers (RPAs) are used to measure in situ auroral ionospheric plasma parameters. This article analyzes data from a low-resource RPA in order to quantify the capability of the sensor. The RPA collects a sigmoidal current-voltage (I-V) curve, which depends on a non-linear combination of Maxwellian plasma parameters, so a forward-modeling procedure is used to match the best choice plasma parameters for each I-V curve. First, the procedure is used, given constraining information about the flow moment, to find scalar plasma parameters-ion temperature, ion density, and spacecraft sheath potential-for a single I-V curve interpreted in the context of a Maxwellian plasma distribution. Second, two azimuthally separated I-V curves from a single sensor on the spinning spacecraft are matched, given constraining information on density and sheath potential, to determine the bulk plasma flow components. These flows are compared to a high-fidelity, high-resource flow diagnostic. In both cases, the procedure's sensitivity to variations in constraining diagnostics is tested to ensure that the matching procedure is robust. Finally, a standalone analysis is shown, providing plasma scalar and flow parameters using known payload velocity and International Reference Ionosphere density as input information. The results show that the sensor can determine scalar plasma measurements as designed, as well as determine plasma DC flows to within hundreds of m/s error compared to a high-fidelity metric, thus showing their capability to replace higher-resource methods for determining DC plasma flows when coarse-resolution measurements at in situ spatial scales are suitable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5144498 | DOI Listing |
J Mol Model
January 2025
College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).
View Article and Find Full Text PDFPostgrad Med J
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Niğde Omer Halisdemir University, Niğde, 51000, Turkey.
Background: Epoxyeicosatrienoic acids (EETs) are closely associated with lipoprotein metabolism, and changes in lipid profiles potentially affect their levels and functions. Given the alterations in lipid metabolism after cholecystectomy, this study aimed to investigate the levels of four EET regioisomers (free and esterified) and lipid profiles in patients with cholelithiasis after laparoscopic cholecystectomy (LC) and explore correlations between these parameters.
Methods: This prospective study involved 40 patients with symptomatic cholelithiasis who underwent LC.
Rev Sci Instrum
January 2025
Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei 230026, China.
A novel all-fiber optic current sensor (FOCS) is designed specifically for the measurement of large transient currents based on the Faraday effect. A reciprocal symmetric structure is incorporated into the optical sensing loop, and the current dependent phase demodulation is achieved by using a passive optical fiber coupler and the homodyne detection scheme. This design offers several advantages, including structural simplicity, high voltage insulation, low noise, high linearity, and excellent frequency response, and is highly suitable for use in any system of high-voltage, high-power, and high-frequency in nature.
View Article and Find Full Text PDFFront Nutr
January 2025
Department of BioSciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore, India.
Consumption of plant-based food is steadily increasing and follows an augmented trend owing to their nutritive, functional, and energy potential. Different bioactive fractions, such as phenols, flavanols, and so on, contribute highly to the nutritive profile of food and are known to have a sensitivity toward higher temperatures. This limits the applicability of traditional thermal treatments for plant products, paving the way for the advancement of innovative and non-thermal techniques such as pulsed electric field, microwave, ultrasound, cold plasma, and high-pressure processing.
View Article and Find Full Text PDFIndian J Endocrinol Metab
December 2024
Department of Endocrinology, Bai Yamunabai Laxman Nair Charitable Hospital and Topiwala National Medical College, Mumbai, Maharashtra, India.
Introduction: The effect and mechanism of skipping breakfast on glycemic control in type 2 diabetes mellitus (T2DM) in Asian-Indians is unknown.
Methods: Cross-over, within-group study recruiting 5 habitual breakfast eaters (BE) and 5 habitual breakfast skippers (BS) with uncontrolled T2DM (HbA1c 7-9%). Patients underwent testing after three days of following their usual breakfast habits and after seven days of crossing over to the other arm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!