Aging is associated with functional and morphological changes in the sensory organs, including the auditory system. Mitophagy, a process that regulates the turnover of dysfunctional mitochondria, is impaired with aging. This study aimed to investigate the effect of aging on mitophagy in the central auditory system using an age-related hearing loss mouse model. C57BL/6J mice were divided into the following four groups based on age: 1-, 6-, 12-, and 18-month groups. The hearing ability was evaluated by measuring the auditory brainstem response (ABR) thresholds. The mitochondrial DNA damage level and the expression of mitophagy-related genes, and proteins were investigated by real-time polymerase chain reaction and Western blot analyses. The colocalization of mitophagosomes and lysosomes in the mouse auditory cortex and inferior colliculus was analyzed by immunofluorescence analysis. The expression of genes involved in mitophagy, such as , , and in the mouse auditory cortex and inferior colliculus, was investigated by immunohistochemical staining. The ABR threshold increased with aging. In addition to the mitochondrial DNA integrity, the mRNA levels of , , , and , as well as the protein levels of , , , , LC3B, mitochondrial oxidative phosphorylation (OXPHOS) subunits I-IV in the mouse auditory cortex significantly decreased with aging. The immunofluorescence analysis revealed that the colocalization of mitophagosomes and lysosomes in the mouse auditory cortex and inferior colliculus decreased with aging. The immunohistochemical analysis revealed that the expression of , , and decreased in the mouse auditory cortex and inferior colliculus with aging. These findings indicate that aging-associated impaired mitophagy may contribute to the cellular changes observed in an aged central auditory system, which result in age-related hearing loss. Thus, the induction of mitophagy can be a potential therapeutic strategy for age-related hearing loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584026 | PMC |
http://dx.doi.org/10.3390/ijms21197202 | DOI Listing |
Front Pharmacol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
Objective: This research investigated the possible shielding properties of BB (Berberrubine) against the harmful auditory effects of cisplatin, preliminarily delving into the underlying mechanisms responsible for this protection.
Methods: HEI-OC1 cell viability was determined using a Cell Counting Kit-8 (CCK-8). The impact of BB on cochlear hair cells was studied through cochlear explants culture.
Mol Brain
January 2025
Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.
View Article and Find Full Text PDFEar Hear
January 2025
Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
Objectives: Occupational hearing loss is a significant problem worldwide despite the fact that it can be mitigated by the wearing of hearing protection devices (HPDs). When surveyed, workers frequently report that worsened work performance while wearing HPDs is one reason why they choose not to wear them. However, there have been few studies to supplement these subjective reports with objective measures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
Categorization is an essential task for sensory perception. Individuals learn category labels using a variety of strategies to ensure that sensory signals, such as sounds or images, can be assigned to proper categories. Categories are often learned on the basis of extreme examples, and the boundary between categories can differ among individuals.
View Article and Find Full Text PDFNat Commun
January 2025
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!