Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds.

Molecules

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.

Published: September 2020

The rising pollution of the environment with endocrine disrupting compounds has increased interest in searching for new, effective bioremediation methods. Particular attention is paid to the search for microorganisms with high degradation potential and the possibility of their use in the degradation of endocrine disrupting compounds. Increasingly, immobilized microorganisms or enzymes are used in biodegradation systems. This review presents the main sources of endocrine disrupting compounds and identifies the risks associated with their presence in the environment. The main pathways of degradation of these compounds by microorganisms are also presented. The last part is devoted to an overview of the immobilization methods used for the purposes of enabling the use of biocatalysts in environmental bioremediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583021PMC
http://dx.doi.org/10.3390/molecules25194473DOI Listing

Publication Analysis

Top Keywords

endocrine disrupting
16
disrupting compounds
16
degradation endocrine
8
compounds
5
suitability immobilized
4
immobilized systems
4
systems microbiological
4
degradation
4
microbiological degradation
4
endocrine
4

Similar Publications

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

Exploring DiPP (Diisopentyl Phthalate) Neurotoxicity and the Detoxification Process in Zebrafish Larvae - A Silent Contaminant?

Environ Res

January 2025

School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM). Electronic address:

Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

The associations between prenatal plastic phthalate exposure and lipid acylcarnitine levels in humans and mice.

Reprod Toxicol

January 2025

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia. Electronic address:

Phthalates are ubiquitous environmental pollutants known for their endocrine-disrupting properties, particularly during critical periods such as pregnancy and early childhood. Phthalates alter lipid metabolism, but the role of prenatal exposure on the offspring lipidome is less understood. In particular, we focused on long chain acylcarnitines - intermediates of fatty acid oxidation that serve as potential biomarkers of mitochondrial function and energy metabolism.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!