Kv3.1 channel is abundantly expressed in neurons and its dysfunction causes sleep loss, neurodegenerative diseases and depression. Fluoxetine, a serotonin selective reuptake inhibitor commonly used to treat depression, acts also on Kv3.1. To define the relationship between Kv3.1 and serotonin receptors (SR) pharmacological modulation, we showed that 1C11, a serotonergic cell line, expresses different voltage gated potassium (VGK) channels subtypes in the presence (differentiated cells (1C11D)) or absence (not differentiated cells (1C11ND)) of induction. Only Kv1.2 and Kv3.1 transcripts increase even if the level of Kv3.1b transcripts is highest in 1C11D and, after fluoxetine, in 1C11ND but decreases in 1C11D. The Kv3.1 channel protein is expressed in 1C11ND and 1C11D but is enhanced by fluoxetine only in 1C11D. Whole cell measurements confirm that 1C11 cells express (VGK) currents, increasing sequentially as a function of cell development. Moreover, SR 5HT1b is highly expressed in 1C11D but fluoxetine increases the level of transcript in 1C11ND and significantly decreases it in 1C11D. Serotonin dosage shows that fluoxetine at 10 nM blocks serotonin reuptake in 1C11ND but slows down its release when cells are differentiated through a decrease of 5HT1b receptors density. We provide the first experimental evidence that 1C11 expresses Kv3.1b, which confirms its major role during differentiation. Cells respond to the fluoxetine effect by upregulating Kv3.1b expression. On the other hand, the possible relationship between the fluoxetine effect on the kinetics of 5HT1b differentiation and Kv3.1bexpression, would suggest the Kv3.1b channel as a target of an antidepressant drug as well as it was suggested for 5HT1b.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583048 | PMC |
http://dx.doi.org/10.3390/ijms21197175 | DOI Listing |
Probl Radiac Med Radiobiol
December 2024
State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: To establish the level of chromosomal instability in human peripheral blood lymphocytes during thedevelopment of secondary radiation-induced bystander effect.
Materials And Methods: Human peripheral blood lymphocytes; culture of human non-small-cell lung cancer cell lineA549 (irradiated in vitro by 137Cs in a dose of 0.50 Gy/unirradiated).
Probl Radiac Med Radiobiol
December 2024
Educational and Scientific Center «Institute of Biology and Medicine» of the Taras Shevchenko Kyiv National University, 64/13 Volodymyrska Str., Kyiv, 01601, Ukraine.
Objective: to investigate changes in DNA methylation in bystander and inducer cells during the manifestation ofdirect and rescue bystander effects.
Methods: Separate and co-cultivation of peripheral blood lymphocytes (PBL) of 10 conditionally healthy individuals; γ-quantum irradiation (IBL-237C emitter); modified comet electrophoresis method (Comet assay) under neutralconditions using the methylation-sensitive restriction enzyme HpaII; fluorescence microscopy with an automatedcomputer software system for analyzing the results; statistical methods.
Results: The level of DNA methylation in PBL was quantitatively assessed using DNA migration parameters inagarose gel: the length of the comet tail (in μm), the percentage of DNA in the tail part of the comet, and TailMoment (TM), which simultaneously takes into account both the amount of DNA in the tail part of the comet andthe length of the tail.
Probl Radiac Med Radiobiol
December 2024
State Institution «National Research Center for Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriya Illienka Street, Kyiv, 04050, Ukraine.
Parathyroids are the key regulators of calcium-phosphorus metabolism. By means of parathyroid hormone they respond to any changes in the serum level of calcium and phosphorus ions and determine the integrity of skeleton, affecting almost all systems and cells where calcium and phosphorus are involved in metabolism and/or signaling.Disorders of parathyroid function are associated with significant complications accompanying secondary hyperparathyroidism.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
Nonprofit Organization «National Cancer Institute of Ministry of Health of Ukraine», 33/43 Julia Zdanovska Str., Kyiv, 03022, Ukraine.
The review is devoted to the use of a new class of radiopharmaceuticals (RPs) - chemokine receptor ligands - in oncological practice. The chemokine receptor CXCR4 is of particular interest as a molecular target in the diagnosis and treatment of malignant tumors, as it plays an important role in carcinogenesis. By interacting with the chemokine CCXL12, it activates cell signaling pathways that affect tumor cell proliferation, angiogenesis, metastasis growth, and apoptosis inhibition.
View Article and Find Full Text PDFJ Bone Joint Surg Am
October 2024
Office of Research on Women's Health, National Institutes of Health, Bethesda, Maryland.
JBJS convened a symposium to discuss the reporting of sex and gender in research studies as an imperative to improve research methods and results to benefit all patients. Barriers to improved reporting include a lack of societal and cultural acceptance of its need; a lack of education regarding appropriate terminology and appropriate statistical methods and efficient study designs; a need for increased research funding to support larger group sizes; unknown concordance of cell and animal models with humans to reflect biologic variables such as sex; and a lack of understanding of key considerations of gender, race, and other social determinants of health and how these factors intersect. Attention to developing and disseminating best-practice statistical methods and to educating investigators (at all career levels), reviewers, funders, editors, and staff in their proper implementation will aid reporting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!