Epigenetic response to nanopolystyrene in germline of nematode Caenorhabditis elegans.

Ecotoxicol Environ Saf

Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China. Electronic address:

Published: December 2020

microRNAs (miRNAs) provide an epigenetic regulation mechanism for the response to environmental toxicants. mir-38, a germline miRNA, was increased by exposure to nanopolystyrene (100 nm). In this study, we further found that germline overexpression of mir-38 decreased expressions of nhl-2 encoding a miRISC cofactor, ndk-1 encoding a homolog of NM23-H1, and wrt-3 encoding a homolog of PPIL-2. Meanwhile, germline-specific RNAi knockdown of nhl-2, ndk-1, or wrt-3 caused the resistance to nanopolystyrene toxicity. Additionally, mir-38 overexpression suppressed the resistance of nematodes overexpressing germline nhl-2, ndk-1, or wrt-3 containing 3'UTR, suggesting the role of NHL-2, NDK-1, and WRT-3 as the targets of germline mir-38 in regulating the response to nanopolystyrene. Moreover, during the control of response to nanopolystyrene, EKL-1, a Tudor domain protein, was identified as the downstream target of germline NHL-2, kinase suppressors of Ras (KSR-1 and KSR-2) were identified as the downstream targets of germline NDK-1, and ASP-2, a homolog of BACE1, was identified as the downstream target of germline WRT-3. Our results raised a mir-38-mediated molecular network in the germline in response to nanopolystyrene in nematodes. Our data provided an important basis for our understanding the response of germline of organisms to nanoplastic exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111404DOI Listing

Publication Analysis

Top Keywords

response nanopolystyrene
16
nhl-2 ndk-1
12
ndk-1 wrt-3
12
identified downstream
12
germline
10
encoding homolog
8
germline nhl-2
8
targets germline
8
downstream target
8
target germline
8

Similar Publications

Toxicological and Biomarker Assessment of Freshwater Zebra Mussels () Exposed to Nano-Polystyrene.

Toxics

October 2024

School of Physics, Clinical and Optometric Science, Technological University Dublin, City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland.

The presence of sub-micron-sized plastics in the environment has been increasing, with the possible risks of these particles remaining relatively unknown. In order to assess the toxicity of these particles, 100 nm diameter green fluorescent nano-polystyrene spheres (NPS) (20-60 mg/L) were exposed to zebra mussels () to investigate the mortality, clearance rate and stress-related biomarker responses. were collected and analysed with standard OECD toxicological tests and biomarker analysis to detect both physical and biochemical responses after exposure to NPS.

View Article and Find Full Text PDF
Article Synopsis
  • Significant concerns have been raised regarding the environmental pollutants phoxim (PHO) and nanopolystyrene (NP) and their effects on the hepatopancreas of Eriocheir sinensis (a type of crab) when exposed to realistic concentrations.
  • Subchronic exposure to NP and/or PHO for 21 days caused histological damage, reduced the number of healthy cells, and impaired protective barriers in the hepatopancreas, indicating a toxic effect on this organ.
  • The study also found that both individual and combined exposures led to inflammation and disrupted the expression of genes related to oxidative stress, mucus production, and immune response, confirming that NP and PHO pose significant risks to crustacean health.
View Article and Find Full Text PDF

Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is .

View Article and Find Full Text PDF

Nanoplastics pose a potential threat to a wide variety of aquatic organisms. Despite the awareness of this existing hazard, the impact of nanoplastics on natural fungal communities remains a research gap. In this study, five dominant fungi species, isolated from a stream ecosystem, were used to explore the effects of different nano-polystyrene (nano-PS) particles concentrations on a simulated fungal community.

View Article and Find Full Text PDF

Nanopolystyrene (NP) and phoxim (PHO) are common environmental pollutants in aquatic systems. We evaluated the toxic effects of exposure to ambient concentrations of NP and/or PHO in the intestines of the Chinese mitten crab (Eriocheir sinensis). Our study showed that histopathological changes were observed in the intestines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!