A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Elucidating user behaviours in a digital health surveillance system to correct prevalence estimates. | LitMetric

Estimating seasonal influenza prevalence is of undeniable public health importance, but remains challenging with traditional datasets due to cost and timeliness. Digital epidemiology has the potential to address this challenge, but can introduce sampling biases that are distinct to traditional systems. In online participatory health surveillance systems, the voluntary nature of the data generating process must be considered to address potential biases in estimates. Here we examine user behaviours in one such platform, FluTracking, from 2011 to 2017. We build a Bayesian model to estimate probabilities of an individual reporting in each week, given their past reporting behaviour, and to infer the weekly prevalence of influenza-like-illness (ILI) in Australia. We show that a model that corrects for user behaviour can substantially affect ILI estimates. The model examined here elucidates several factors, such as the status of having ILI and consistency of prior reporting, that are strongly associated with the likelihood of participating in online health surveillance systems. This framework could be applied to other digital participatory health systems where participation is inconsistent and sampling bias may be of concern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.epidem.2020.100404DOI Listing

Publication Analysis

Top Keywords

health surveillance
12
user behaviours
8
participatory health
8
surveillance systems
8
health
5
elucidating user
4
behaviours digital
4
digital health
4
surveillance system
4
system correct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!