Polysorbates and Poloxamer 188 constitute the most common surfactants used in biopharmaceutical formulations owing to their excellent protein-stabilizing properties and good safety profiles. In recent years, however, a vast number of reports concerning potential risk factors closely related with their applications, such as the accumulation of degradation products, their inherent heterogeneity and adsorption effects of proteins at silicon/oil interfaces have drawn the focus to potential alternatives. Apart from tedious efforts to evaluate new excipient candidates, the use of mixed formulations leveraging combinations of well-established surfactants appears to be a promising approach to eliminate or, at least, minimize and postpone adverse effects associated with the single compounds. Due to the similar molecular properties of non-ionic surfactants, however, baseline separation of these mixtures, which is mandatory for their reliable quantification, poses a great challenge to analytical scientists. For this purpose, the present work describes the development of a robust mixed-mode liquid chromatography method coupled to evaporative light scattering detection (mixed-mode LC-ELSD) for simultaneous determination of the (intact) Polysorbate 20 and Poloxamer 188 content in biopharmaceutical formulations containing monoclonal antibodies. Extensive qualification and validation studies, comprising the evaluation of method specificity, robustness, linearity, accuracy and precision according to ICH guidelines, demonstrated its suitability for quality control studies. A case study on the storage stability of a formulated antibody was conducted to underline the method's practical utility. Finally, the versatility of the developed approach was successfully tested by quantifying Polysorbate 20-related surfactants, such as Polysorbate 80 and super-refined Polysorbate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2020.113640DOI Listing

Publication Analysis

Top Keywords

poloxamer 188
12
biopharmaceutical formulations
12
polysorbate poloxamer
8
evaporative light
8
light scattering
8
scattering detection
8
polysorbate
5
simultaneous quantification
4
quantification polysorbate
4
188 biopharmaceutical
4

Similar Publications

Thermosensitive-based synergistic antibacterial effects of novel LL37@ZPF-2 loaded poloxamer hydrogel for infected skin wound healing.

Int J Pharm

January 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:

Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.

View Article and Find Full Text PDF

Alteration of gel point of poloxamer 338 induced by pharmaceutical actives and excipients.

Eur J Pharm Biopharm

January 2025

BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany. Electronic address:

Poloxamer 338 is used as versatile thermo-responsive gelling agent in topical and sub-cutaneous applications. Due to application specific needs a gel point below body or even below room temperature is required. The influence of inorganic salts and active pharmaceutical ingredients (APIs) on the gel point was investigated using oscillatory rheology to identify the driving forces and predictors for gel point alteration.

View Article and Find Full Text PDF

The physicochemical properties of emulsions based on poloxamers (triblock copolymers of a hydrophobic polyoxypropylene chain and two hydrophilic polyoxyethylene chains) depend on the composition and preparation method. This study examined the impact of poloxamer P188 concentration, autoclaving mode, heating, and salt presence on the viscosity, particle size distribution, and morphology of particles using viscometric analysis, dynamic light scattering (DLS), and atomic force microscopy (AFM). It was shown that sample preparation affects the particle size and morphology but not the chemical composition of P188.

View Article and Find Full Text PDF

High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair.

Carbohydr Polym

March 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:

Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!