Acute neuroimmune stimulation impairs verbal memory in adults: A PET brain imaging study.

Brain Behav Immun

Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, United States.

Published: January 2021

Psychiatric and neurologic disorders are often characterized by both neuroinflammation and cognitive dysfunction. To date, however, the relationship between neuroinflammation and cognitive dysfunction remains understudied in humans. Preclinical research indicates that experimental induction of neuroinflammation reliably impairs memory processes. In this paradigm development study, we translated those robust preclinical findings to humans using positron emission tomography (PET) imaging with [C]PBR28, a marker of microglia, and lipopolysaccharide (LPS), a potent neuroimmune stimulus. In a sample of 18 healthy adults, we extended our previous findings that LPS administration increased whole-brain [C]PBR28 availability by 31-50%, demonstrating a robust neuroimmune response (Cohen's ds > 1.6). We now show that LPS specifically impaired verbal learning and recall, hippocampal memory processes, by 11% and 22%, respectively (Cohen's ds > 0.9), but did not alter attention, motor, or executive processes. The LPS-induced increase in [C]PBR28 binding was correlated with significantly greater decrements in verbal learning performance in the hippocampus (r = -0.52, p = .028), putamen (r = -0.50, p = .04), and thalamus (r = -0.55, p = .02). This experimental paradigm may be useful in investigating mechanistic relationships between neuroinflammatory signaling and cognitive dysfunction in psychiatric and neurologic disorders. It may also provide a direct approach to evaluate medications designed to rescue cognitive deficits associated with neuroinflammatory dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749814PMC
http://dx.doi.org/10.1016/j.bbi.2020.09.027DOI Listing

Publication Analysis

Top Keywords

cognitive dysfunction
12
psychiatric neurologic
8
neurologic disorders
8
neuroinflammation cognitive
8
memory processes
8
verbal learning
8
acute neuroimmune
4
neuroimmune stimulation
4
stimulation impairs
4
impairs verbal
4

Similar Publications

Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.

Brain Topogr

January 2025

Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.

View Article and Find Full Text PDF

Background: Thyroid disorders have significant clinical sequelae, including impaired growth in children, metabolic abnormalities, and impaired cognitive function. However, available studies on burden of thyroid diseases in people with human immunodeficiency virus (HIV), particularly its prevalence and its interaction with HIV related factors (like CD4 count), are controversial. This review aimed to provide a comprehensive summary and analysis on the extent of thyroid dysfunctions in this population.

View Article and Find Full Text PDF

Comparing autonomic nervous system function in patients with functional somatic syndromes, stress-related syndromes and healthy controls.

J Psychosom Res

December 2024

REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Background: The goal of this study was to examine autonomic nervous system function by measuring heart rate (HR), heart rate variability (HRV), skin conductance levels (SCL), and peripheral skin temperature (ST) in response to and during recovery from psychosocial stressors in patients with functional somatic syndromes (FSS; fibromyalgia and/or chronic fatigue syndrome), stress-related syndromes (SRS; overstrain or burn-out), and healthy controls (HC).

Methods: Patients with FSS (n = 26), patients with SRS (n = 59), and HC (n = 30) went through a standardized psychosocial stress test consisting of a resting phase (120 s), the STROOP color word task (120 s), a mental arithmetic task (120 s) and a stress talk (120 s), each followed by a 120 s recovery period. HR, HRV, SCL, and ST were monitored continuously.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the role of ferroptosis in the occurrence of postoperative cognitive dysfunction (POCD) using a mouse model and to elucidate whether electroacupuncture (EA) can improve POCD by suppressing ferroptosis via the transferrin receptor 1 (TFR1)-divalent metal transporter 1 (DMT1)-ferroportin (FPN) pathway.

Methods: The experiment involved three groups: the control group, the POCD group and the POCD + EA group. The POCD animal model was established using sevoflurane anesthesia and tibial fracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!