Inhibition of Sar1b, the Gene Implicated in Chylomicron Retention Disease, Impairs Migration and Morphogenesis of Developing Cortical Neurons.

Neuroscience

School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China; State Key Laboratory of Optometry, Ophthalmology and Vision Science, PR China; Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, PR China. Electronic address:

Published: November 2020

Chylomicron Retention Disease (CMRD) is a rare inherited lipid malabsorption syndrome that exhibits a recessive hypocholesterolemia in infants. CMRD has been associated with genetic mutations of SAR1B-a member of the Arf GTPase family involved in the secretory pathway from the endoplasmic reticulum to the Golgi. CMRD patients suffer from multiple neurological deficits, the etiologies of which remain unclear. In this study, we found that Sar1b protein is expressed in developing mouse neocortex. The knockdown of Sar1b does not affect the proliferation and mitotic exit of the neural progenitors but inhibits the radial migration of the newborn cortical neurons. At postnatal day 3, the neurons stalled in the white matter fail to develop axons across the midline of the corpus callosum, resulting in the loss of the neurons later on. hSAR1B(D137N), a CMRD-associated mutant of SAR1B, also impairs the positioning of the cortical neurons in the mouse brain, suggesting a dominant-negative effect by the human heterozygous mutant. The results indicate that SAR1B is crucial to radial migration and axon morphogenesis of the cortical neurons. Our study reveals a cell-autonomous action of Sar1b, which is unrelated to lipid absorption from the gut, on the development of the cerebral cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.09.044DOI Listing

Publication Analysis

Top Keywords

cortical neurons
16
chylomicron retention
8
retention disease
8
radial migration
8
neurons
6
sar1b
5
inhibition sar1b
4
sar1b gene
4
gene implicated
4
implicated chylomicron
4

Similar Publications

A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.

View Article and Find Full Text PDF

Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location.

View Article and Find Full Text PDF

Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.

View Article and Find Full Text PDF

Update on the connectivity of the paraventricular nucleus of the thalamus and its position within limbic corticostriatal circuits.

Neurosci Biobehav Rev

December 2024

Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada. Electronic address:

The paraventricular nucleus of the thalamus (PVT) is generating interest because of evidence establishing a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala.

View Article and Find Full Text PDF

Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury.

Int J Parasitol Drugs Drug Resist

December 2024

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China. Electronic address:

Toxoplasma gondii, a neurotropic protozoan parasite, affects the central nervous system and causes various neurological disorders. Previous studies have demonstrated that Arctigenin (AG) exhibits anti-T. gondii activity and reduces depression-like behaviors induced by T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!