Noncanonical pS727 post translational modification dictates major STAT3 activation and downstream functions in breast cancer.

Exp Cell Res

Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India. Electronic address:

Published: November 2020

Activation of STAT3 via Y705-phosphorylation is well documented across multiple cancer types and thus forms the basis of canonical pathway to judge STAT3 activation. Recently, important roles of two other post translational modification (PTM) sites, i.e. S727-phosphorylation and K685-acetylation, leading to STAT3 activation are reported. However, their critical mode of function in controlling STAT3 dimerization and signaling, independent of canonical activation remains elusive. Therefore, to understand the functional relevance of each STAT3 PTMs in breast cancer (BC), cell models are developed by stable overexpression of PTM-site specific point mutants, i.e. Y705F, S727A or K685R, in a 3'UTR-STAT3 knockdown BC cell background. Results using this model system reveal novel findings showing that phosphorylation at S727 can lead to STAT3 activation independent of phosphoY705. We also demonstrate that loss of pS727 or K685ac significantly affects functional phenotypes such as cell survival and proliferation as well as downstream transcriptional activity (Twist 1, Socs3, c-Myc, Bcl-1 and Mcl-1) of STAT3. Thereafter, by utilizing a BRET biosensor for measuring STAT3 phosphorylation in live cells, a crucial role of pS727 in dictating STAT3 activation and homodimerization formation is uncovered. Further by performing retrospective IHC analysis of total and phospho-forms of STAT3 in a cohort of 76 triple negative breast cancer (TNBC) patient samples, a significant dominant expression of phosphoS727 over phosphoY705 PTM (p < 0.001) is found in STAT3 positive cases. We also focus on validating known STAT3 inhibitor molecules for their action against both pY705 and pS727 activation. This study for the first time demonstrates that an anti-helminth drug compound, Niclosamide, is capable of inactivating both phospho-PTM sites on STAT3 and exhibits excellent anticancer efficacy in preclinical TNBC tumour model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2020.112313DOI Listing

Publication Analysis

Top Keywords

stat3 activation
20
breast cancer
12
stat3
11
post translational
8
translational modification
8
activation
7
noncanonical ps727
4
ps727 post
4
modification dictates
4
dictates major
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!