Background: Targeting insect-specific genes through post-transcriptional gene silencing with RNA interference (RNAi) is a new strategy for insect pest management. However, lepidopterans are recalcitrant to RNAi, which prevents application of novel RNAi technology to many notorious pests, including Ostrinia nubilalis (ECB). Strategies for enhancing RNAi efficiency, including large doses of double-stranded RNA (dsRNA), nuclease inhibitors, transfection reagents, and nanoparticles, have proved useful in other insects exhibiting substantial dsRNA degradation, a major mechanism limiting RNAi efficacy. To determine if similar strategies can enhance RNAi efficiency in ECB, various reagents were tested for their ability to enhance dsRNA stability in ECB tissues, then compared for their effectiveness in whole ECB.
Results: Ex vivo incubation experiments revealed that Meta dsRNA lipoplexes, EDTA, chitosan-based dsRNA nanoparticles, and Zn enhanced dsRNA stability in ECB hemolymph and gut content extracts, compared with uncoated dsRNA. Despite these positive results, the reagents used in this study were ineffective at enhancing RNAi efficiency in ECB in vivo. To reduce assay time and required dsRNA, midguts were dissected and incubated in tissue culture medium containing dsRNA with and without reagents. These experiments showed that RNAi efficiency varied between target genes, and nuclease inhibitors improved RNAi efficiency for only a portion of the refractory target genes investigated ex vivo.
Conclusion: These results indicate that enhancing dsRNA stability is insufficient to improve RNAi efficiency in ECB and suggests the existence of additional, complex mechanisms contributing to low RNAi efficiency in ECB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855606 | PMC |
http://dx.doi.org/10.1002/ps.6114 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China.
Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Endolysosomal degradation of small interfering RNA (siRNA) significantly reduces the efficacy of RNA interference (RNAi) delivered by nonviral systems. Leveraging Golgi apparatus/endoplasmic reticulum (Golgi/ER) transport can help siRNA bypass the endolysosomal degradation pathway, but this approach may also result in insufficient siRNA release and an increased risk of Golgi/ER-mediated exocytosis. To address these challenges, we developed two distinct strategies using a nanocomplex of cell-penetrating poly(disulfide)s and chondroitin sulfate, which enhances targeted internalization, Golgi transport, and rapid cytoplasmic release of loaded siRNA.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Int J Mol Sci
December 2024
College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
The WRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of in our previous research, and we also produced several overexpression (OEXs) and RNAi suppression (REXs) × lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na and K content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, P; stomatal conductance, Gs; intercellular CO concentration, C; transpiration rate, T), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), F/F; actual efficiency of PSII, Φ; photochemical quenching coefficient, q; non-photochemical quenching, NPQ; the photosynthetic light-response curves of Φ and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!