AI Article Synopsis

  • The study presents an elastic multi-wavelength selective switch that can switch between two wavelengths at each crosspoint.
  • The switch was created using a silicon photonics foundry and features a tuning range of 17 nm with an average path loss reduced to 2.43 dB, representing a significant 70% improvement from earlier designs.
  • High-speed data transmission was successfully demonstrated, achieving 111 Gbps using pulse-amplitude modulation over various switch paths.

Article Abstract

We demonstrate an elastic multi-wavelength selective switch with up to two wavelength switching capability per crosspoint. We fabricated the switch in a silicon photonics foundry and demonstrated a 17 nm tuning range for ring resonators, with a mean path loss of 2.43 dB. This is a 70% reduction in path loss as compared to previous generations, and we demonstrate a high-speed pulse-amplitude-modulation-4 transmission at 111 Gbps through different paths of the switch.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.402241DOI Listing

Publication Analysis

Top Keywords

path loss
8
switch
4
switch demonstrate
4
demonstrate elastic
4
elastic multi-wavelength
4
multi-wavelength selective
4
selective switch
4
switch wavelength
4
wavelength switching
4
switching capability
4

Similar Publications

Depression is a complex mental health condition characterized by persistent sadness, loss of interest, and a range of cognitive, emotional, and behavioral symptoms. It can be acute or chronic and is often influenced by a combination of genetic, biological, psychological, and social factors. According to transnational estimates of prevalence, depressive symptoms represent the most concerning challenge to mental health across cultures and beyond geographical borders.

View Article and Find Full Text PDF

This study presents a novel framework for advancing sustainable urban logistics and distribution systems, with a pivotal focus on fast charging and power exchange modalities as the cornerstone of our research endeavors. Our central contribution encompasses the formulation of an innovative electric vehicle path optimization model, whose paramount objective is to minimize overall operational costs. Integrating V2G technology, we facilitate sophisticated slow charging and discharging management of EVs upon their return to distribution centers, enhancing resource utilization.

View Article and Find Full Text PDF

Walnuts possess significant nutritional and economic value. Fast and accurate sorting of shells and kernels will enhance the efficiency of automated production. Therefore, we propose a FastQAFPN-YOLOv8s object detection network to achieve rapid and precise detection of unsorted materials.

View Article and Find Full Text PDF

Harnessing the Electronic Spin States of Single Atoms for Precise Electromagnetic Modulation.

Adv Mater

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

By manipulating their asymmetric electronic spin states, the unique electronic structures and unsaturated coordination environments of single atoms can be effectively harnessed to control their magnetic properties. In this research, the first investigation is presented into the regulation of magnetic properties through the electronic spin states of single atoms. Magnetic single-atom one-dimensional materials, M-N-C/ZrO (M = Fe, Co, Ni), with varying electronic spin states, are design and synthesize based on the electronic orbital structure model.

View Article and Find Full Text PDF

Integrated Oxygen-Constraining Strategy for Ni-Rich Layered Oxide Cathodes.

ACS Nano

December 2024

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Surface engineering is sought to stabilize nickel-rich layered oxide cathodes in high-energy-density lithium-ion batteries, which suffer from severe surface oxygen loss and rapid structure degradation, especially during deep delithiation at high voltages or high temperatures. Here, we propose a well-designed oxygen-constraining strategy to address the crisis of oxygen evolution. By integrating a La, Fe gradient diffusion layer and a LaFeO coating into the Ni-rich layered particles, along with incorporating an antioxidant binder into the electrodes, three progressive lines of defense are constructed: immobilizing the lattice oxygen at the subsurface, blocking the released oxygen at the interface, and capturing the residual singlet oxygen on the external surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!