Ultrasound (US) image restoration from radio frequency (RF) signals is generally addressed by deconvolution techniques mitigating the effect of the system point spread function (PSF). Most of the existing methods estimate the tissue reflectivity function (TRF) from the so-called fundamental US images, based on an image model assuming the linear US wave propagation. However, several human tissues or tissues with contrast agents have a nonlinear behavior when interacting with US waves leading to harmonic images. This work takes this nonlinearity into account in the context of TRF restoration, by considering both fundamental and harmonic RF signals. Starting from two observation models (for the fundamental and harmonic images), TRF estimation is expressed as the minimization of a cost function defined as the sum of two data fidelity terms and one sparsity-based regularization stabilizing the solution. The high attenuation with a depth of harmonic echoes is integrated into the direct model that relates the observed harmonic image to the TRF. The interest of the proposed method is shown through synthetic and in vivo results and compared with other restoration methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2020.3028166DOI Listing

Publication Analysis

Top Keywords

fundamental harmonic
12
harmonic images
12
ultrasound image
8
harmonic
6
image deconvolution
4
fundamental
4
deconvolution fundamental
4
images
4
images ultrasound
4
image restoration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!