Benzo[e][1,2,4]triazinyl, or Blatter radicals, are stable free radicals, first reported by Blatter in 1968. In contrast to their nitroxide counterparts, their properties can be modified more widely and more easily through simple substitution changes. This, together with recent developments in their synthesis, now places them at the forefront of developing applications in functional materials. Herein, we survey the various methods to synthesise and customise Blatter radicals, highlighting key developments in the last decade that have transformed their utility. We then outline their important spectroscopic, structural, electrochemical, magnetic and chemical properties and how these depend on their chemical structure and morphology. Finally, we review their growing list of applications including as sensors, spin labels, magnetic materials, liquid crystals and in polymer and small molecule synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob01394c | DOI Listing |
J Am Chem Soc
January 2025
Faculty of Chemistry, University of Łódź, Tamka 12, 91403 Łódź, Poland.
Cofacial arrangement of two Blatter radicals enforced by the -naphthalene scaffold represents a new approach to stable diradicals with strong through-space interactions. Two stereoisomers of the naphthalene-diradicals, and , are investigated by XRD, VT-EPR, UV-vis, electrochemical, kinetic, and DFT methods. In solutions, both stereoisomers exist as open-shell singlets with Δ = -3.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland.
Photocyclization of 8-aryloxy-3-phenylbenzo[][1,2,4]triazines leads to π-delocalized helicene radicals 1[n] ( = 5, 6, 7) containing the ring-fused 1,4-dihydro[1,2,4]triazin-4-yl as a spin source. Single crystal XRD revealed that the photocyclization to 1[n] involves a Smiles rearrangement. Radicals 1[n] were investigated by spectroscopic, electrochemical and DFT methods, while racemic helicene 1[7] was resolved and ECD spectra were recorded.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan.
Herein, we report the synthesis and properties of triptycene-based C- and C-symmetric stable triradicals. SQUID magnetometry showed the propeller-shaped triradicals were both an antiferromagnetic equilateral triangle spin system with small spin-spin interactions J/k~-120 K and -106 K, leading to ca. 4/6 coexistence of the doublet/quartet states in thermal equilibrium at room temperature.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2024
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Near-infrared (NIR)-absorbing dyes are valuable for various applications, such as bioimaging and electronic devices. This work introduces a novel approach for designing NIR dyes, oxidation of weakly coupled diradicals. Our approach features a weak exchange interaction in diradicals, which potentially leads to bonding/antibonding molecular orbitals with a small energy gap.
View Article and Find Full Text PDFJ Hazard Mater
October 2024
International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia. Electronic address:
The reduction of hazardous nitric oxide emissions remains a significant ecological challenge. Despite the variety of possibilities, sorbents able to capture low concentrations of NO from flue gas with high selectivity are still in demand. In this work a new type of mesoporous xerogel material highly loaded with ultrastable Blatter radicals (BTR, >60 % by mass) that act as selective NO sorption sites is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!