In this study, antioxidant-rich extracts from brewer's spent grain (BSG) extracted by solid-to-liquid extraction using different solvents water and ethanol and their mixtures at two ratios (80% ethanol : water (v/v) and 60% ethanol : water (v/v)) were characterized. Nutritional composition was evaluated for the extracts and for the solid residues obtained after extraction. Additionally, the extracts were analyzed for the total phenolic content and individual phenolic compounds and related biological properties including antioxidant capacity (ABTS; ORAC and DNA protection), antihypertensive capacity, antibacterial activity and antibiofilm capacity. Safety was also demonstrated through genotoxicity and cytotoxicity tests. The results obtained showed that while all the extracts exhibited high antioxidant capacity (except ethanolic extract), the highest values were obtained for the 60% ethanol : water extract. The identification of phenolic compounds using HPLC showed that catechin and vanillin were the main compounds identified with the highest concentration being obtained for 60% ethanol : water extraction. In the biological activity assays, water and hydroethanolic extracts were multifunctional (antioxidant and antihypertensive capacity, antibacterial and antibiofilm activity), and the 80% ethanol : water presented better results in some assays. All were non-genotoxic, but the cytotoxicity was dependent on the extract concentration, with complete safe application for all up to 1 mg mL-1. Therefore, this study shows the potential of a viable green solvent based and low cost extraction recovery method of bioactive compounds from brewer's spent grain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0fo01426e | DOI Listing |
Waste Manag
December 2024
Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark. Electronic address:
Large scale production of insect larvae is considered a sustainable way to upcycle various organic waste- and by-products into more valuable food and feed products. The sustainability of insect larvae production depends on the substrates and species being used, but comparative studies that include both growth and efficiency are lacking. Here we compare larval fitness, including survival, development time, weight, substrate conversion efficiency, substrate reduction, and metabolic parameters across different combinations of densities and waste- and by-product-based substrates on the two fly species, the house fly (Musca domestica) and the black soldier fly (Hermetia illucens).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina. Electronic address:
Three microcapsule formulations with 2.7, 5.5 and 10.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Institut de Recherche ESTP, 94230 Cachan, France.
This study investigates the use of Brewers' Spent Grains (BSGs) as a sustainable biocomposite building materials, using cornstarch as a biopolymer binder. BSG aggregates are compared with hemp shives, a conventional aggregate known for its thermal properties. Starch is employed as a natural binder in three different formulations to further reduce the carbon footprint of the building material.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Food and Nutrition Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
Barley (Hordeum vulgare) is widely used in the production of beer and distilled beverages, generating a nutrient-rich by-product known as brewer's spent grain (BSG). This study investigates the potential of brewer's spent grain flour (BSGF) as a functional ingredient to enhance the nutritional profile of bakery products, specifically chocolate cakes, while contributing to waste reduction in the food industry. The effects of partially substituting wheat flour with BSGF at 40% and 60% levels were assessed.
View Article and Find Full Text PDFChimia (Aarau)
December 2024
Sustainable Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Food and beverage production generates enormous amounts of spent residues in the form of pomaces, pulps, grains, skins, seeds, etc. Although these sidestreams remain nutritious, their conversion to foods can be complicated by issues of digestibility and processing, particularly when the residues are wet and therefore highly susceptible to microbial degradation. Ideally, these sidestreams could be stabilized and then re-circulated into food, instead of being diverted to waste, animal feed, or biofuels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!