Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elimination of basic blue 9 (BB-9), a cationic textile dye, by electrocoagulation coupled with biosorption exploiting pelletized natural dead leaves (PNDL) of , an economic alternative biosorbent, was investigated. The experimental runs were conducted in a laboratory-scale hybrid reactor loaded with Al electrodes, aeration spargers and PNDL packed twin suspended buckets. The pelletized adsorbents offer key advantages of good mechanical stability, lesser clogging risk, and easy disengagement as compared to powdered adsorbents. The parameters of current density, pH, PNDL dose, and initial dye concentration were studied for the decolorization and COD removal efficiency. The experimental results revealed that up to 99.9% decolorization and 90.01% COD removal efficiency achieved after 8 min at optimum condition of current density ()=20.27 mA/cm, pH = 9, PNDL dose = 6 g/L, and initial dye concentration = 50 mg/L. The BB-9 elimination followed the first-order kinetics with =0.318 min and =0.997. The results revealed the potential of PNDL as a feasible biosorbent with the effective performance of the coupled process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2020.1825328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!