Toward lateral heterostructures with two-dimensional MoXH (X = As, Sb).

Phys Chem Chem Phys

Department of Science, Shandong Jianzhu University, 250101 Jinan, P. R. China.

Published: October 2020

The development of two-dimensional (2D) lateral heterostructures (LHs) with the powerful tunability of electronic properties will be of great realistic significance for next-generation device applications. Herein, we report the novel 2D MoX2 and MoX2H2 (X = As or Sb) monolayer materials with excellent stability. Using first-principles calculations, we demonstrated that 2D MoX2 layers possess the metallic characteristic while the full surface hydrogenation effect would play a role in stabilizing the 2D lattices and lead to band gap openings of 0.83 and 0.50 eV for the 2D MoAs2H2 and MoSb2H2, respectively. In addition, our results suggest that the 2D MoAs2H2 and MoSb2H2 can serve as the 'building blocks' to construct the seamless LHs exhibiting excellent thermal and dynamical stability. The obtained nL-MoAsSb LHs enable the fully tunable band gap engineering behavior with linear tendency as a function of the width of the in-plane components. The phase transition from direct to in-direct band gap was also confirmed in the LHs as the crucial value of n = 3. In view of the type-II band alignment and efficient carrier separation in nL-MoAsSb, the predicted MoX2H2 and nL-MoAsSb LHs not only highlight the promising candidates for 2D pristine materials, but also paves the way for the realization of practical integrating device applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03530kDOI Listing

Publication Analysis

Top Keywords

band gap
12
lateral heterostructures
8
device applications
8
moas2h2 mosb2h2
8
nl-moassb lhs
8
lhs
5
heterostructures two-dimensional
4
two-dimensional moxh
4
moxh development
4
development two-dimensional
4

Similar Publications

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

SnHPO: A Layered Tin(II) Phosphate with Enhanced Birefringence.

Inorg Chem

January 2025

College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.

As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.

View Article and Find Full Text PDF

Harnessing Hole Sites in 2D Monolayer C for Metal Cluster Anchoring.

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

Synthesis of 2D quasi-hexagonal phase C (qHP C) has opened avenues for its application as a novel catalytic support. This study investigates the structure, stability, and anisotropic properties of Cu clusters anchored on the qHP C surface through density functional theory calculations. Our findings reveal that the Cu cluster preferentially occupies the intrinsic holes of the qHP C via one of its tetrahedral faces, resulting in enhanced stability and conductivity, with a significantly reduced band gap of 0.

View Article and Find Full Text PDF

The Best of Both Worlds: ΔDFT Describes Multiresonance TADF Emitters with Wave-Function Accuracy at Density-Functional Cost.

J Phys Chem Lett

January 2025

Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.

With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size.

View Article and Find Full Text PDF

Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.

Adv Sci (Weinh)

January 2025

School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.

Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!