Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metathesis reactions are one of the most reliable and prevalent ways of creating a C-C bond in synthesis. Photochemical variants exist, and they have proven extremely useful for the construction of complex molecules, from natural products to Möbius rings. A variety of starting materials can undergo photometathesis reactions, including alkenes, alkynes, carbonyls, thiocarbonyls, and ketenes. While many of these reactions proceed with UV light and require harsh conditions, a handful of new techniques for visible-light photometathesis reactions have appeared recently. Given the current developments in visible-light photocatalysis, we believe that many more visible light photometathesis reactions await discovery. In this first review on the subject of photometathesis, we have gathered the relevant literature to give the reader an in-depth understanding of the field, and to inspire further development and synthetic application of these fascinating reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob01450h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!