COO-BODIPYs are highlighted as cutting edge scaffolds for easy access to a new generation of multichromophoric architectures with enhanced (photo)chemical stability, showing either boosted capability for excitation energy transfer, glow fluorescence and laser emission, or photoinduced electron transfer. The new finding paves the way for the rapid development of smarter organic dyes for advancing photonics and optoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc04902f | DOI Listing |
Biomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning, Guangxi, 530004, China.
Two dipicolylamine (DPA) derivatives with the pyrene and anthracene groups, 1-(pyren-1-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L1) and 1-(anthracen-9-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L2) were synthesized, characterized, and their affinitive properties for metal ions were studied. The mass spectroscopy and Job's plots showed that L1 and L2 reacted with Cu and formed complexes [Cu(L1)(solvent)] (L1-Cu) and [Cu(L2)(solvent)] (L2-Cu), respectively. Both L1 and L2 were fluorescent probes recognizing Cu via the emission quenching and further detecting HS via the emission revival.
View Article and Find Full Text PDFLangmuir
January 2025
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China.
Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!