The synthesis of protein-protein and protein-peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into -quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517114 | PMC |
http://dx.doi.org/10.1021/acscentsci.0c00940 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany.
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
Small-molecule fluorophores are invaluable tools for fluorescence imaging. However, means for their covalent conjugation to the target proteins limit applications in multicolor imaging. Here, we identify 2-[(alkylhio)(ryl)ethylene]alononitrile (TAMM) molecules reacting with 1,2-aminothiol at a labeling rate over 10 M s through detailed mechanistic investigation.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders.
View Article and Find Full Text PDFPolym Chem
May 2024
Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States.
Glycopolymers have been employed as biomimetic glycoconjugates in both biological and biomedical research and applications. Among them, chain-end functionalized glycopolymers are very often explored for protein modification, microarray, biosensor, bioprobe and other applications. Herein, we report a straightforward synthesis of α,ω-end orthogonally functionalizable glycopolymers.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest via conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!