Endocranial anatomy of the ceratopsid dinosaur and interpretations of sensory and motor function.

PeerJ

Institute of Dinosaur Research, Fukui Prefectural University, Yoshida-gun, Eiheiji-cho, Fukui, Japan.

Published: September 2020

is one of the well-known Cretaceous ceratopsian dinosaurs. The ecology of has been controversial because of its unique morphological features. However, arguments based on brain and inner ear structures have been scarce. In this study, two braincases (FPDM-V-9677 and FPDM-V-9775) were analyzed with computed tomography to generate three-dimensional virtual renderings of the endocasts of the cranial cavities and bony labyrinths. Quantitative analysis, including comparison of linear measurements of the degree of development of the olfactory bulb and inner ear, was performed on these virtual endocasts to acquire detailed neuroanatomical information. When compared with other dinosaurs, the olfactory bulb of is relatively small, indicating that had a reduced acuity in sense of smell. The lateral semicircular canal reveals that the basicranial axis of is approximately 45° to the ground, which is an effective angle to display their horns as well as frill, and to graze. The semicircular canals of are relatively smaller than those of primitive ceratopsians, such as and , suggesting that sensory input for the reflexive stabilization of gaze and posture of was less developed than that of primitive ceratopsians. The cochlear length of is relatively short when compared with other dinosaurs. Because cochlear length correlates with hearing frequency, was likely adapted to hearing low frequencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505063PMC
http://dx.doi.org/10.7717/peerj.9888DOI Listing

Publication Analysis

Top Keywords

inner ear
8
olfactory bulb
8
compared dinosaurs
8
primitive ceratopsians
8
cochlear length
8
endocranial anatomy
4
anatomy ceratopsid
4
ceratopsid dinosaur
4
dinosaur interpretations
4
interpretations sensory
4

Similar Publications

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Non-syndromic hearing loss (NSHL) is a genetically heterogeneous disorder accounting for almost 70% of the total congenital hearing loss. The implementation of rapid advanced sequencing methods has significantly contributed to the correct molecular diagnosis for several rare genetic disorders, including NHSL. Features of two probands with NHSL were clinically and genetically evaluated.

View Article and Find Full Text PDF

Corrigendum: Characterization of expression in mouse cochlear hair cells.

Front Genet

December 2024

State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.

[This corrects the article DOI: 10.3389/fgene.2021.

View Article and Find Full Text PDF

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

Middle Ear Mechanics in the Barn Owl.

J Morphol

January 2025

Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA.

The barn owl is a common research subject in auditory science due to its exceptional capacity for high frequency hearing and superb sound source localization capabilities. Despite longstanding interest in the auditory performance of barn owls, the function of its middle ear has attracted remarkably little attention. Here, we report the middle ear transfer function measured by laser Doppler vibrometry and direct measurements of inner ear pressures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!