Riparian environments are highly dynamic ecosystems that support biodiversity and numerous services and that are conditioned by anthropogenic activities and climate change. In this work, we propose an integrated methodology that combines different research approaches-field studies and numerical and analytical modeling-in order to calibrate an ecohydrological stochastic model for riparian vegetation. The model yields vegetation biomass statistics and requires hydrological, topographical, and biological data as input. The biological parameters, namely, the carrying capacity and the flood-related decay rate, are the target of the calibration as they are related to intrinsic features of vegetation and site-specific environmental conditions. The calibration is here performed for two bars located within the riparian zone of the Cinca River (Spain). According to our results, the flood-related decay rate has a spatial dependence that reflects the zonation of different plant species over the study site. The carrying capacity depends on the depth of the phreatic surface, and it is adequately described by a right-skewed curve. The calibrated model well reproduces the actual biogeography of the Cinca riparian zone. The overall percentage absolute difference between the real and the computed biomass amounts to 9.3% and 3.3% for the two bars. The model is further used to predict the future evolution of riparian vegetation in a climate-change scenario. The results show that the change of hydrological regime forecast by future climate projections may induce dramatic reduction of vegetation biomass and strongly modify the Cinca riparian biogeography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507785 | PMC |
http://dx.doi.org/10.1029/2020MS002094 | DOI Listing |
Sci Total Environ
January 2025
Department of Forest Science, College of Agriculture, University of São Paulo (ESALQ), Av. Padua Dias, 11, Caixa Postal 9, 13418-900 Piracicaba, SP, Brazil.
Forest restoration has been a common practice to safeguard water quality and stream health but it is unclear to which extent and pace forest restoration recovers stream ecosystem structure and functions. Also, stream health might be affected by the forest restoration type and the quality of the interventions. Here, we sought to evaluate the recovery of stream habitat and water quality through forest restoration in catchments dominated by pasturelands, and explored the relationship between landscape structure and stream ecosystem recovery.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, China.
Litterfall load is crucial in maintaining ecosystem health, controlling wildfires, and estimating carbon stock in arid regions. However, there is a lack of spatiotemporal analysis of litterfall in arid riparian forests. This study aims to estimate Litterfall load using a BP neural network based on vegetation indices from Landsat 5 and 8 satellite images, litterfall inventory data, slope, and distance to major river tributaries.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Rampurhat College, PO-Rampurhat, Dist-Birbhum, 731224, India.
In fluvial environments, the shifting of river channels and bank erosion are frequently caused by both natural and anthropogenic factors. Riverine hazards like bank erosion and course alterations offer severe issues to the riparian villages along the lower basin of the Tista River in India, which substantially influence the livelihoods of inhabitants living there. This research addressed river channel shifting tendency and identified major bank erosion-prone villages along the lower course of the Tista River and challenges to the livelihoods of the riparian people.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.
View Article and Find Full Text PDFEcol Evol
December 2024
Platypus Conservation Initiative, Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences University of New South Wales Sydney New South Wales Australia.
Platypuses are a unique freshwater mammal native to eastern Australia. They are semi-aquatic, predominantly nocturnal, and nest in burrows dug into the banks of waterbodies. Quantifying nesting burrow characteristics is challenging due to the species' cryptic nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!