Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants.

Sci Rep

Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006, Badajoz, Spain.

Published: September 2020

We analyze the breakup of a pendant water droplet loaded with SDS. The free surface minimum radius measured in the experiments is compared with that obtained from a numerical solution of the Navier-Stokes equations for different values of the shear and dilatational surface viscosities. This comparison shows the small but measurable effect of the surface viscous stresses for sufficiently small spatiotemporal distances from the breakup point, and allows to establish upper bounds for the values of the shear and dilatational viscosities. We study numerically the distribution of Marangoni and viscous stresses over the free surface as a function of the time to the pinching, and describe how surface viscous stresses grow in the pinching region as the free surface approaches its breakup. When Marangoni and surface viscous stresses are taken into account, the surfactant is not swept away from the thread neck in the time interval analyzed. Surface viscous stresses eventually balance the driving capillary pressure in the pinching region for small enough values of the time to pinching. Based on this result, we propose a scaling law to account for the effect of the surface viscosities on the last stage of temporal evolution of the neck radius.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528013PMC
http://dx.doi.org/10.1038/s41598-020-73007-1DOI Listing

Publication Analysis

Top Keywords

surface viscous
20
viscous stresses
20
free surface
12
surface
9
values shear
8
shear dilatational
8
surface viscosities
8
time pinching
8
pinching region
8
viscous
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!