The proper communication between gut and brain is pivotal for the maintenance of health and, dysregulation of the gut-brain axis can lead to several clinical disorders. In Parkinson's disease (PD) 85% of all patients experienced constipation many years before showing any signs of motor phenotypes. For differential diagnosis and preventive treatment, there is an urgent need for the identification of biomarkers indicating early disease stages long before the disease phenotype manifests. DJ-1 is a chaperone protein involved in the protection against PD and genetic mutations in this protein have been shown to cause familial PD. However, how the deficiency of DJ-1 influences the risk of PD remains incompletely understood. In the present study, we provide evidence that DJ-1 is implicated in shaping the gut microbiome including; their metabolite production, inflammation and innate immune cells (ILCs) development. We revealed that deficiency of DJ-1 leads to a significant increase in two specific genera/species, namely Alistipes and Rikenella. In DJ-1 knock-out (DJ-1) mice the production of fecal calprotectin and MCP-1 inflammatory proteins were elevated. Fecal and serum metabolic profile showed that malonate which influences the immune system was significantly more abundant in DJ-1 mice. DJ-1 appeared also to be involved in ILCs development. Further, inflammatory genes related to PD were augmented in the midbrain of DJ-1 mice. Our data suggest that metabolites and inflammation produced in the gut could be used as biomarkers for PD detection. Perhaps, these metabolites and inflammatory mediators could be involved in triggering inflammation resulting in PD pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528091PMC
http://dx.doi.org/10.1038/s41598-020-72903-wDOI Listing

Publication Analysis

Top Keywords

dj-1 mice
12
dj-1
10
gut microbiome
8
cells ilcs
8
deficiency dj-1
8
ilcs development
8
dj-1 park7
4
gut
4
park7 gut
4
microbiome metabolites
4

Similar Publications

Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.

View Article and Find Full Text PDF

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Radiation-induced intestinal injury is a common complication of radiotherapy for abdominal and pelvic malignancies. Due to its rapid proliferation, the small intestine is particularly sensitive to radiation, making it a critical factor limiting treatment. Ferulic acid (FA), a derivative of cinnamic acid, exhibits antioxidant, anti-inflammatory, and anti-radiation properties.

View Article and Find Full Text PDF

Parkinson's disease is a progressive neurodegenerative disease with well-documented motor symptoms as well as less recognised, but significant, non-motor symptoms. These non-motor symptoms include prodromal pain and peripheral neuropathy, the causes of which are unknown. We investigated the role of DJ-1/PARK7, a Parkinson's disease-associated gene, in prodromal pain and peripheral neuropathy.

View Article and Find Full Text PDF

Mesenchymal stromal cells deliver HS-enhanced Nrf2 via extracellular vesicles to mediate mitochondrial homeostasis for repairing hypoxia-ischemia brain damage.

Free Radic Biol Med

November 2024

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China. Electronic address:

Article Synopsis
  • Mesenchymal stromal cells (MSCs) are being investigated for their potential to treat neurological diseases through their extracellular vesicles (EVs), particularly in conditions of hypoxia-ischemia (HI) brain damage.
  • In this study, modified EVs from MSCs preconditioned with NaHS reduced oxidative stress and improved mitochondrial function in HI mice when delivered intranasally, compared to regular EVs.
  • The mechanism involved the upregulation of the Nrf2 protein, which was loaded into EVs, leading to enhanced delivery of this antioxidant to neurons, and the research shows that knocking down Nrf2 in MSCs weakened the therapeutic effects of HS-EVs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!