We report a unique multiyear L-band microwave radiometry dataset collected at the Maqu site on the eastern Tibetan Plateau and demonstrate its utilities in advancing our understandings of microwave observations of land surface processes. The presented dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. Measurement cases in winter, pre-monsoon, monsoon and post-monsoon periods are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527448PMC
http://dx.doi.org/10.1038/s41597-020-00657-1DOI Listing

Publication Analysis

Top Keywords

land surface
12
soil moisture
12
l-band microwave
8
microwave radiometry
8
surface processes
8
tibetan plateau
8
soil
6
multiyear in-situ
4
in-situ l-band
4
microwave
4

Similar Publications

Non-optically active water quality parameters (NAWQPs) are essential for surface water quality assessments, although automated monitoring methods are time-consuming, include labor-intensive chemical pretreatment, and pose challenges for high spatiotemporal resolution monitoring. Advancements in spectroscopic techniques and machine learning may address these issues. We integrated ultraviolet-visible-near infrared absorption spectroscopy with physical-chemical measurements to predict total nitrogen (TN), dissolved oxygen (DO), and total phosphorus (TP) in the Yangtze River Basin, China.

View Article and Find Full Text PDF

Influences of rainfall characteristics on water saving and stormwater control performances of rainwater harvesting systems.

J Environ Manage

January 2025

Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 101407, China.

Rainwater harvesting systems (RHS) are extensively executed to manage stormwater control and water shortage issues in cities. However, the influences of rainfall characteristics on the performances of RHS are still not deeply explored. In this research, a methodology framework is developed to explore the influences of rainfall characteristics on stormwater control and water saving performances of RHS, by using daily precipitation data during 1968-2017 at 30 stations across the Beijing region as a testbed.

View Article and Find Full Text PDF

Comparative analysis of global urban land surface phenology between the MODIS and VIIRS products and extraction methods.

J Environ Manage

January 2025

Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, China.

The reliability of land surface phenology (LSP) derived from satellite remote sensing is crucial for obtaining accurate estimates of the phenological response of vegetation to future climate change in urban ecosystems. Differences in phenological definition and extraction methodology using remote sensing can generate systemic errors in estimating the phenological temperature sensitivity to predict the biological response of vegetation. Here, we evaluated the start of the season (SOS), the end of the season (EOS), and the growing season length (GSL) between the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) and the Suomi National Polar-Orbiting Partnership NASA Visible Infrared Imaging Radiometer Suite (VIIRS) Land Cover Dynamics (VNP22Q2) over 1470 urban clusters worldwide.

View Article and Find Full Text PDF

Groundwater plays a key role in the water cycle and is used to meet industrial, agricultural, and domestic water demands. High-resolution modeling of groundwater storage is often challenging due to the limitations of observation techniques and mathematical methods. In this study, two machine learning (ML) algorithms, namely random forest (RF) and artificial neural networks (ANNs), were employed to estimate groundwater level anomaly (GWLA) and groundwater storage anomaly (GWSA) with a 0.

View Article and Find Full Text PDF

Monitoring wetland cover changes and land surface temperatures using remote sensing and GIS in Göksu Delta.

Integr Environ Assess Manag

January 2025

Faculty of Fine Arts, Design and Architecture Department of Landscape Architecture, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.

Wetlands provide necessary ecosystem services, such as climate regulation and contribution to biodiversity at global and local scales, and they face spatial changes due to natural and anthropogenic factors. The degradation of the characteristic structure signals potential severe threats to biodiversity. This study aimed to monitor the long-term spatial changes of the Göksu Delta, a critical Ramsar site, using remote sensing techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!