Osteoclasts are the only bone-resorbing cells in organisms and understanding their differentiation mechanism is crucial for the treatment of osteoporosis. In the present study, we investigated the effect of Thiamet G, an O-GlcNAcase specific inhibitor, on osteoclastogenic differentiation. Thiamet G treatment increased global O-GlcNAcylation in murine RAW264 cells and suppressed receptor activator of nuclear factor-κB ligand (RANKL)-dependent formation in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells, thereby suppressing the upregulation of osteoclast specific genes. Meanwhile, knockdown of O-linked N-acetylglucosamine (O-GlcNAc) transferase promoted the formation TRAP-positive multinuclear cells. Thiamet G treatment also suppressed RANKL and macrophage colony-stimulating factor (M-CSF) dependent osteoclast formation and bone-resorbing activity in mouse primary bone marrow cells and human peripheral blood mononuclear cells. These results indicate that the promotion of O-GlcNAc modification specifically suppresses osteoclast formation and its activity and suggest that chemicals affecting O-GlcNAc modification might potentially be useful in the prevention or treatment of osteoporosis in future.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b20-00221DOI Listing

Publication Analysis

Top Keywords

thiamet treatment
12
treatment osteoporosis
8
trap-positive multinuclear
8
multinuclear cells
8
osteoclast formation
8
o-glcnac modification
8
cells
6
treatment
5
osteoclast
4
osteoclast differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!