Effects of Preexisting Diabetes Mellitus on the Severity of Traumatic Brain Injury.

J Neurotrauma

Department of Legal Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.

Published: April 2021

Falls and traffic accidents can cause traumatic brain injury (TBI). Assessment of the injury severity is essential to determine the prognosis or the cause of death. Diabetes mellitus (DM) is a common preexisting disease in elderly adults. We hypothesized that preexisting DM exacerbates TBI secondary to prolonged inflammation. In this study, we investigated TBI-induced changes in nerve function and inflammatory cell migration to the injury site, and the extent of brain contusion in KK-Ay (DM) and C57BL/6J (non-DM) mice. A controlled cortical impact device was used to induce TBI in each mouse. The brain contusion volume was measured using magnetic resonance imaging. Nerve function changes were assessed using the following animal behavior tasks: neurological severity score (NSS), Morris water maze, forced swim test, and beam walking. Immunohistochemical examinations of brain sections were performed to assess the infiltration of neutrophils, astrocytes, microglia, and macrophages, and to detect apoptosis. These experiments were performed on post-injury days 1-90 (over five experiments/time-points in each group). Compared with non-DM mice, DM mice showed significantly greater brain contusion volume, greater deterioration in the NSS, and a higher number of neutrophils, macrophages, and apoptotic cells in the brain tissue specimens. This study indicates that the prognosis of normal mice and DM mice differs, even if they acquire a TBI of the same severity. Therefore, it is important to evaluate patients with TBI for DM and other preexisting diseases in order to provide adequate treatment or to determine the correct cause of death.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2020.7118DOI Listing

Publication Analysis

Top Keywords

brain contusion
12
diabetes mellitus
8
traumatic brain
8
brain injury
8
nerve function
8
non-dm mice
8
contusion volume
8
mice mice
8
brain
7
tbi
5

Similar Publications

Automated Quantification of Axonal and Myelin Changes in Contusion, Dislocation, and Distraction Spinal Cord Injuries: Insights into Targeted Remyelination and Axonal Regeneration.

Brain Res Bull

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University - Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Quantifying axons and myelin is essential for understanding spinal cord injury (SCI) mechanisms and developing targeted therapies. This study proposes and validates an automated method to measure axons and myelin, applied to compare contusion, dislocation, and distraction SCIs in a rat model. Spinal cords were processed and stained for neurofilament, tubulin, and myelin basic protein, with histology images segmented into dorsal, lateral, and ventral white matter regions.

View Article and Find Full Text PDF

Background: Stereoelectroencephalography (SEEG) is a common diagnostic surgical procedure for patients with medically refractory epilepsy. We aimed to describe our initial experience with the recently released NeuroOne Evo SEEG electrode product (Zimmer Biomet, Warsaw, IN) and review technical specifications for other currently approved depth SEEG electrodes.

Methods: We performed a record review on the first five patients implanted with NeuroOne Evo SEEG electrode product using the robotic stereotactic assistance robot platform and described our surgical technique in detail.

View Article and Find Full Text PDF

Traumatic direct type carotid cavernous fistula (CCF) is an acquired arteriovenous shunt between the carotid artery and the cavernous sinus post severe craniofacial trauma or iatrogenic injury. We reported a 46-year-old woman who had developed a traumatic direct type CCF after severe head trauma with a skull base fracture and brain contusion hemorrhage. The clinical manifestations of the patient included pulsatile exophthalmos, proptosis, bruits, chemosis, and a decline in consciousness.

View Article and Find Full Text PDF

: Despite improvements in technology and safety measures, injuries from collisions involving motor vehicles (CIMVs) continue to be prevalent. Therefore, our goal is to investigate the different patterns of head injuries associated with CIMVs. : This is a single-center, retrospective study of patients with motor vehicle-related trauma between 1 January 2016-31 December 2023.

View Article and Find Full Text PDF

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!