Physiological mechanism of transglutaminase-mediated improvement in salt tolerance of cucumber seedlings.

Plant Physiol Biochem

College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China. Electronic address:

Published: November 2020

Transglutaminase (TGase) is inextricably associated with plant growth and development. However, the mechanism by which TGase enhances salt tolerance of higher plants under salt stress is poorly understood. In this study, we investigated the effects of NaCl stress and exogenous o-phenanthroline (o-Phen, a metalloprotease inhibitor) on TGase activity, chlorophyll fluorescence parameters, carbohydrates contents, the reactive oxygen species (ROS) scavenging system, and endogenous polyamines (PAs) contents of salt-sensitive 'Jinyou No. 4' and salt-tolerant 'Inbred Line 9930' cucumber. Salt stress significantly inhibited plant growth of the two cultivars, as well as hindered carbohydrates transport, which was more evident in the salt-sensitive cultivar. TGase activity and expression, ROS scavenging capacity, and bound PAs content were up-regulated by salt stress to some extent, which was more distinct in the salt-tolerant cucumber cultivar. However, o-Phen treatment significantly inhibited TGase expression, and further decreased plant growth and the actual photochemical efficiency of photosystem II in the two cultivars. In addition, application of o-Phen significantly decreased endogenous PAs content in leaves of 'Jinyou No. 4' and 'Inbred Line 9930' seedlings by 9.60% and 42.32% under NaCl stress, respectively. These results suggested that high activity of TGase increases the salt stress tolerance of cucumber plants by increasing endogenous PAs content and ROS scavenging capacity, and promoting carbon assimilation and photosynthetic products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.09.010DOI Listing

Publication Analysis

Top Keywords

salt stress
16
plant growth
12
ros scavenging
12
pas content
12
salt tolerance
8
tolerance cucumber
8
nacl stress
8
tgase activity
8
'inbred 9930'
8
scavenging capacity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!